COMUNE DI RUSSI

REALIZZAZIONE DI ADEGUAMENTO SISMICO DELLA SCUOLA PRIMARIA "M.FANTOZZI".

VIA XVII NOVEMBRE 2
SAN PANCRAZIO - RUSSI (RA)

RELAZIONE TECNICA SPECIALISTICA

Committente: Comune di Russi

STUDIO DI INGEGNERIA ING.ENRICO TASSELLI

Via Risorgimento n.78 48022-LUGO- (RA)

INDICE DEGLI ELABORATI

INDICE DEGLI ELABORATI	1
PREMESSA	3
2. RELAZIONE DI CALCOLO STRUTTURALE	4
2.1. ILLUSTRAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO	
STRUTTURALE	4
a) DESCRIZIONE DEL CONTESTO EDILIZIO E DELLE CARATTERISTICHE GEOLOGICHE DEL SIT	
b) DESCRIZIONE GENERALE DELLA STRUTTURA	
c) NORMATIVA TECNICA E RIFERIMENTI TECNICI UTILIZZATI	
d) PARAMETRI DI PROGETTO	
e) MATERIALI	
h) INDICAZIONE MOTIVATA DEL METODO DI ANALISI	
g) INDICAZIONE MOTIVATA DEL METODO DI ANALISI	
i) CRITERI DI VERIFICA	
j) RAPPRESENTAZIONE DEFORMATE E SOLLECITAZIONI MAGGIORMENTE SIGNIFICATIVE	
k) CARATTERISTICHE E AFFIDABILITA' DEL CODICE DI CALCOLO	
ĺ) STRUTTURE DI FONDAZIONE	
m) CATEGORIA DI INTERVENTO E MOTIVAZIONE SCELTA ADOTTATA	
n) ANALISI STORICO CRITICA ED ESITI DEL RILIEVO GEOMETRICO- STRUTTURALE o) LIVELLO DI CONOSCENA, FATTORE DI CONFIDENZA E PROPRIETA' MECCANICHE DEI MAT ESISTENTI	ERIALI
p) CONFRONTO STATO ATTUALE E DI PROGETTO	
2.2. TABULATI DI CALCOLO E VERIFICHE	
3. RELAZIONE SUI MATERIALI	191
4. ELABORATI GRAFICI ESECUTIVI E PARTICOLARI COSTRUTTIVI	192
5. PIANO DI MANUTENZIONE DELLA PARTE STRUTTURALE DELL'OPERA	193
6. RELAZIONE SUI RISULTATI SPERIMENTALI	228
7. ELABORATI GRAFICI DEL RILIEVO GEOMETRICO-STRUTTURALE	229
8. VALUTAZIONE DELLA SICUREZZA	229
9. DOCUMENTAZIONE FOTOGRAFICA	230

PREMESSA

Il fabbricato in oggetto è stato sottoposto alla valutazione di sicurezza (Verifica tecnica n°542 dell'Allegato 1: Scuola Elementare "Cap. Mario Fantozzi"), con la quale si è determinato il comportamento statico e dinamico della struttura ed il suo livello di sicurezza, in relazione sia ai carichi verticali, che alle azioni sismiche; tale verifica tecnica, redatta dall'ing. Angelo Sermonesi, prevedeva l'esecuzione di interventi volti a migliorare localmente il comportamento delle strutture e quindi ad aumentarne il livello di sicurezza.

Il fabbricato oggetto di intervento è la sede della Scuola Elementare "Cap. Mario Fantozzi" ubicato in via XVII novembre n°2 in località San Pancrazio nel Comune di Russi in Provincia di Ravenna. La scuola è composta da tre corpi di fabbrica: il fabbricato adibito a scuola, la palestra e il corridoio di collegamento tra le due strutture principali. Tutte le strutture sono separate tra loro.

Il fabbricato adibito a scuola ha dimensioni massime planimetriche pari a 47.40x30.65m, lo sviluppo in altezza è di un piano fuori terra, con la porzione perimetrale a quota di circa 4m e la porzione centrale a quota di circa 6.45m (altezza massima in gronda).

Il fabbricato adibito a palestra ha dimensioni massime planimetriche pari a 20.80x28.64m, lo sviluppo in altezza è di un piano fuori terra. La zona spogliatoi presenta altezza massima in gronda pari a 3.50m, mentre la zona palestra presenta altezza massima in gronda pari a 6.40m.

Gli interventi in progetto, estesi su tutti i corpi si fabbrica, sono finalizzati ad accrescere la capacità di resistenza e duttilità delle strutture esistenti alle azioni considerate, in modo tale da adeguare staticamente e sismicamente il fabbricato, e quindi da potere essere inquadrati in interventi di **adeguamento** ai sensi del D.M. 17/1/2018 e Circolare n. 7/CSLLPP del 21 gennaio 2019 contenente le "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni".

Ai sensi del cap. C.8.4.3 della Circolare n.7/CSLLPP del 21 gennaio 2019 sarà considerato adeguamento sismico il raggiungimento di $\zeta_{\rm E}$ pari o maggiore di 0.8, in quanto l'adeguamento sismico è stato deciso dal proprietario a seguito di inadeguatezza riscontrata attraverso la valutazione di sicurezza.

Per una migliore lettura del progetto si rimanda alle tavole architettoniche.

2. RELAZIONE DI CALCOLO STRUTTURALE

2.1. ILLUSTRAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO STRUTTURALE

a) DESCRIZIONE DEL CONTESTO EDILIZIO E DELLE CARATTERISTICHE GEOLOGICHE DEL SITO

Il fabbricato oggetto di intervento si trova a San Pancrazio di Russi. Questo territorio della pianura presenta pendenza media <15° per cui non sono previsti effetti di amplificazione legati alla topografia. Il fattore ST (coefficiente di amplificazione topografica) è valutato quindi pari a 1.0 Per quanto riguarda le caratteristiche geologiche, morfologiche e idrogeologiche del sito si rimanda al capitolo 6 della presente relazione.

b) DESCRIZIONE GENERALE DELLA STRUTTURA

Il progetto prevede i seguenti interventi:

SCUOLA

- Controllo dello stato di manutenzione di tutti i solai mediante battitura ed eventuale posizionamento di rete antisfondellamento all'intradosso dei solai in latero-cemento delle aule;
- Realizzazione di controventi di piano a livello del solaio di sottotetto delle aule in modo tale da
 aumentare significativamente la rigidezza dell'impalcato e non permettere spostamenti relativi
 dei singoli pilastrini presenti a livello della copertura centrale. I controventi saranno realizzati
 con putrelle metalliche collegate ai cordoli di piano e alle murature e saranno posizionati
 all'intradosso del solaio stesso;
- Realizzazione di nuova parete portante formata da blocchi di laterizio di spessore minimo 30cm
 e malta di cemento collegata efficacemente alle murature esistenti. Alla base della nuova parete
 dovrà essere realizzata un fondazione a trave rovescia in c.a. per ripartire i carichi derivanti dal
 peso della parete stessa. Sulla sommità della parete sarà realizzato un cordolo di dimensioni
 minime 30x20 armato con 4f16 e staffe f8/25cm;
- Miglioramento della rigidezza della porzione di copertura alta realizzata con pilastrini e travi in
 c.a. mediante il posizionamento di controventi di parete nelle due direzioni principali realizzati
 mediante elementi metallici opportunamente collegati al telaio in c.a. esistente;
- Adeguamento statico e sismico della porzione di copertura alta realizzata con pilastrini e travi in c.a. mediante il posizionamento di mensoline mediante profili metallici per ridurre la luce delle travi in c.a. sommitali e rinforzo dei pilastrini d'angolo in c.a. 30x70 mediante putrelle in acciaio ancorate al pilastrino stesso e alle travi in c.a. poste alla base e in sommità del pilastrino.

PALESTRA E SERVIZI

- Inserimento di nuovi elementi resistenti (setti in c.a e controventi metallici) in modo da migliorare il comportamento e la risposta alle azioni sismiche. Le nuove strutture verranno adeguatamente collegate a quelle esistenti. Verranno infine adeguate le fondazioni esistenti in corrispondenza degli elementi di rinforzo;
- Realizzazione di controventi di piano a livello del solaio di sottotetto del corpo servizi. I
 controventi saranno realizzati con putrelle metalliche collegate ai cordoli di piano e alle murature
 e saranno posizionati all'intradosso del solaio stesso;

Per la localizzazione degli elementi soggetti agli interventi di rinforzo sopra elencati si rimanda alla tavola strutturale.

c) NORMATIVA TECNICA E RIFERIMENTI TECNICI UTILIZZATI

- D.M. 17/01/2018 "Norme tecniche delle costruzioni"
- Circolare n. 7/CSLLPP del 21 gennaio 2019 contenente le "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni"
- La progettazione è stata redatta nella piena osservanza delle Leggi 64/74 e 1086/71 e dei relativi decreti attuativi.

d) PARAMETRI DI PROGETTO

In considerazione della ordinarietà delle opere si assume:

- vita nominale $V_N = 50$ anni;
- classe d'uso III;
- periodo di riferimento $V_R = 50$ anni
- categoria sottosuolo C;
- categoria topografica T1;
- amplificazione topografica S_S=1.393

$$C_C=1.555$$

L'intervento è ubicato in zona sismica 2:

Sito di costruzione: Via XVII novembre n°2 San Pancrazio di Russi Lat. 44°,36003 N; Long. 12°,07983 E.

Foto aerea

AZIONI DI PROGETTO SULLA COSTRUZIONE

Il fabbricato in oggetto attualmente è adibito a scuola solo al piano terra, mentre al piano primo ha destinazione d'uso di civile abitazione; nella fase di progetto sarà interamente adibito a scuola.

Copertura alta scuola – solaio in latero-cemento h=38+4cm

analisi dei carichi:	- peso proprio h=38+4cm	450 kg/mq
	- permanenti non strutturali	100 kg/mq
	- carichi variabili (neve)	120 kg/mq

Solaio di sottotetto scuola – copertura bassa h=14cm

analisi dei carichi:	- peso proprio	130 kg/mq
	- permanenti non strutturali	30
	- carichi variabili	0 kg/mq

Copertura bassa scuola – travi Varese e tavelloni

analisi dei car	richi: - peso proprio (travi – tavelloni)	130	kg/mq
	- manto di copertura	20	"
	- carichi variabili (neve)	200	"

Copertura alta palestra - solaio in latero-cemento h=16cm

analisi dei carichi:	- peso proprio h=16cm	160 kg/mq
	- permanenti non strutturali	20 kg/mq
	- carichi variabili (neve)	130 kg/mq

Copertura bassa palestra zona servizi - solaio in latero-cemento h=12cm

analisi dei carichi:	- peso proprio h=16cm	130 kg/mq
	- permanenti non strutturali	20 kg/mq
	- carichi variabili (neve)	200 kg/mq

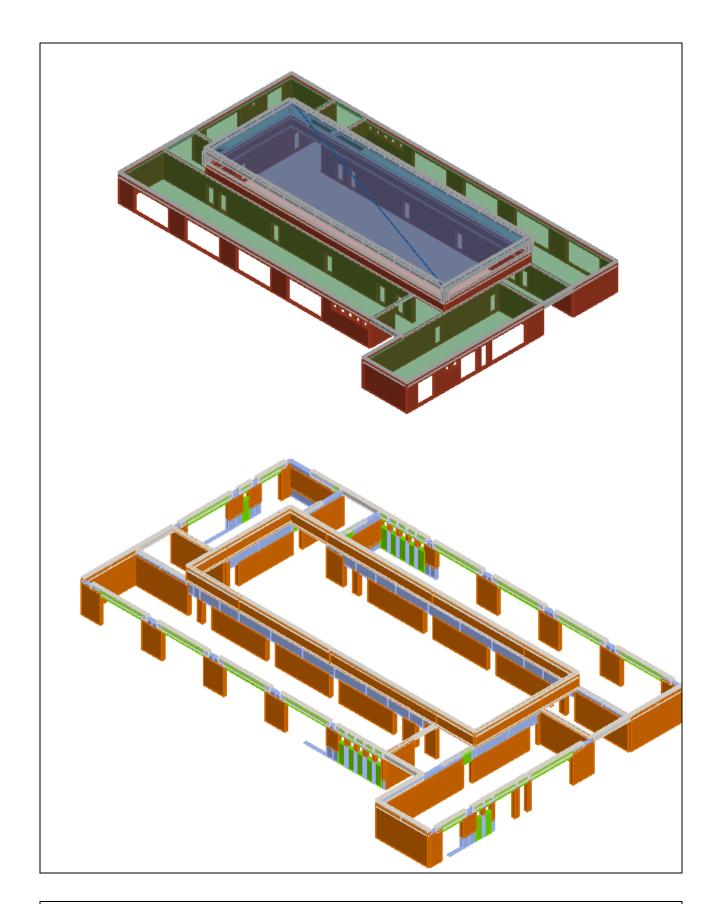
e) MATERIALI

Per quanto riguarda i materiali si prescrivono:

- Mattoni/blocchi semipieni fbk>100 kg/cm2;
- malta di cemento tipo M10;
- calcestruzzo per i getti delle fondazioni
 - o Rck 300 kg/cm²
 - o classe di esposizione XC2
 - o classe di consistenza del getto S4
 - o dimensione aggregato max 25 mm
- calcestruzzo per i getti in elevazione
 - \circ Rck 350 kg/cm²
 - o classe di esposizione XC2
 - o classe di consistenza del getto S5
 - o dimensione aggregato max 16 mm
- acciaio del tipo B450C controllato in stabilimento
- acciaio del tipo S235JR controllato in stabilimento
- acciaio del tipo S355JR controllato in stabilimento per i controventi metallici della palestra
- bulloni cl.8.8 e dadi classe 6S;
- acciaio del tipo S235JR controllato in stabilimento
- resina epossidica tipo HILTY HY 200-A

Prescrizioni per la posa

- 1. Stagionatura dei getti
 - o Durata della stagionatura protetta: 3 giorni
 - Protezione della stagionatura:
 - non rimuovere i casseri
 - copertura con teli di plastica
 - rivestimento con teli umidi
 - nebulizzare acqua in superficie
 - applicare prodotti stagionanti che formano una membrana protettiva superficiale
- 2. Rimozione dei casseri
- f) ILLUSTRAZIONE DEI CRITERI DI PROGETTAZIONE E DI MODELLAZIONE
- h) INDICAZIONE MOTIVATA DEL METODO DI ANALISI


Gli interventi sul fabbricato rientrano nella categoria "adeguamento" ai sensi della normativa vigente per cui:

SCUOLA


- per il calcolo e la <u>verifica globale</u> del fabbricato si sono seguite le prescrizioni del punto 8.7.1 del D.M. 17/01/2018, mediante analisi statica non lineare. Il fabbricato è stato modellato come assemblaggio tridimensionale di telai equivalenti (pareti murarie) e orizzontamenti (solai) utilizzando il codice di calcolo TREMURI. Nel calcolo si è considerata la rigidezza degli elementi in fase fessurata. I solai sono stati modellati come elementi finiti ortotropi a comportamento membranale considerando la loro effettiva rigidezza. Alla base si sono assunti incastri perfetti in ogni nodo: tale approssimazione, ai fini dell'analisi sismica eseguita, risulta trascurabile ai fini del comportamento globale dell'edificio. Le azioni sismiche di progetto in base alle quali si valuterà il rispetto dei diversi stati limite considerati, si definiranno a partire dalla "pericolosità sismica di base" del sito, come previsto dalle normative vigenti. La "pericolosità sismica" è definita in termini di accelerazione orizzontale massima attesa ag, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR nel periodo di riferimento VR. La porzione in c.a. sommitale è stata modellata come "tetto non strutturale" per considerare il carico corretto;
- il calcolo della struttura in c.a. che compone la copertura alta della zona centrale dell'edificio è stata studiata separatamente mediante analisi modale, considerando i rinforzi applicati negli ultimi anni dopo l'analisi di vulnerabilità condotta nel 2009.
- per il calcolo e le <u>verifiche locali</u> si sono utilizzati fogli di calcolo excel, che eseguono le verifiche richieste dal D.M. 17/1/2018;
- sono state controllate le verifiche statiche condotte sui solai riportate nell'analisi di vulnerabilità sismica del 2009 (prot.19/11/2009 prot. 12988) eseguita dall'ing. Angelo Sermonesi. Le analisi condotte si ritengono sostanzialmente complete e corrette e si conferma l'adeguatezza dei solai ai carichi statici a cui sono sottoposti.

Si vuole sottolineare che a seguito delle nuove indagini e verifiche locali e globali svolte dal sottoscritto ingegnere con software di calcolo diversi da quelli utilizzati durante l'analisi di vulnerabilità sismica del 2009, si sono riscontrate le stesse vulnerabilità rilevate durante l'analisi di vulnerabilità sismica stessa, anche se con indici di rischio diversi dovuti, appunto, dall'utilizzo di software diversi.

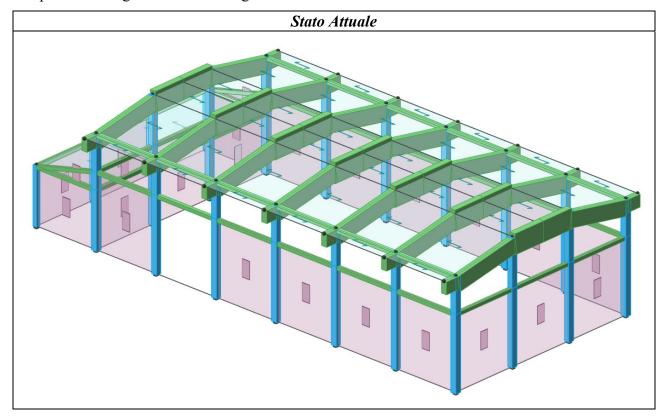
Modello Stato di Fatto

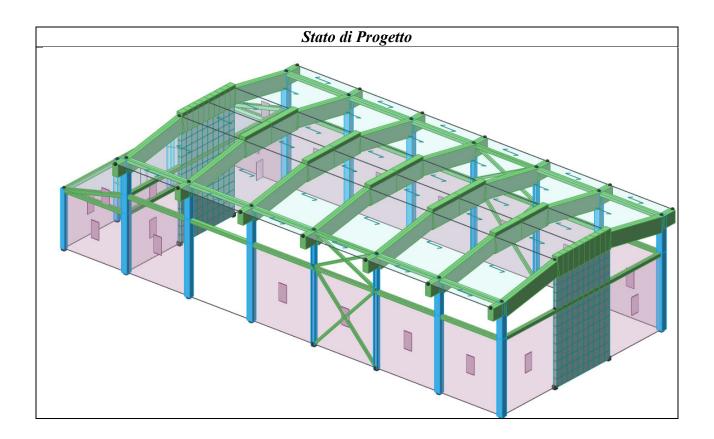
Modello Stato di Progetto

Il calcolo della struttura sommitale in c.a. è stata eseguita mediante *analisi lineare dinamica*, considerando il **fabbricato non dissipativo** e utilizzando un fattore di comportamento pari a q=1. In conformità a quanto prescritto dal punto 2.5.3. del D.M. 17/1/2018 le masse della struttura sottoposta al moto impresso dal sisma sono quelle del peso proprio e dei carichi permanenti nonché di un'aliquota dei carichi variabili secondo quanto indicato nella tabella 2.5.I del suddetto DM.

In particolare, sono stati considerati i modi di vibrare a cui corrisponde l'eccitazione di più dell'85% delle masse della struttura quindi le sollecitazioni e gli spostamenti complessivi sono stati calcolati mediante combinazione quadratica completa dei valori relativi a ciascun modo di vibrare.

È stato omesso il calcolo delle fondazioni in quanto si rientra nei casi del cap.8.3 del DM 17/01/2018.


PALESTRA


Il calcolo è stato eseguito secondo quanto prescritto ai punti 7.3.3.1 del D.M. 17/1/2018 mediante analisi lineare dinamica della struttura con q=1.5.

In conformità a quanto prescritto dalle norme tecniche le masse della struttura sottoposte al moto impresso dal sisma sono quelle del peso proprio e dei carichi permanenti nonché di un'aliquota dei carichi variabili secondo quanto indicato nella tabella 2.5.I del suddetto DM.

In particolare, sono stati considerati i modi di vibrare a cui corrisponde l'eccitazione di più dell'85% delle masse della struttura quindi le sollecitazioni e gli spostamenti complessivi sono stati calcolati mediante combinazione quadratica completa dei valori relativi a ciascun modo di vibrare.

Si riportano di seguito alcune immagini del modello tridimensionale creato.

g) INDICAZIONI DELLE PRINCIPALI COMBINAZIONI

Le combinazioni di carico adottate nelle analisi sono le seguenti:

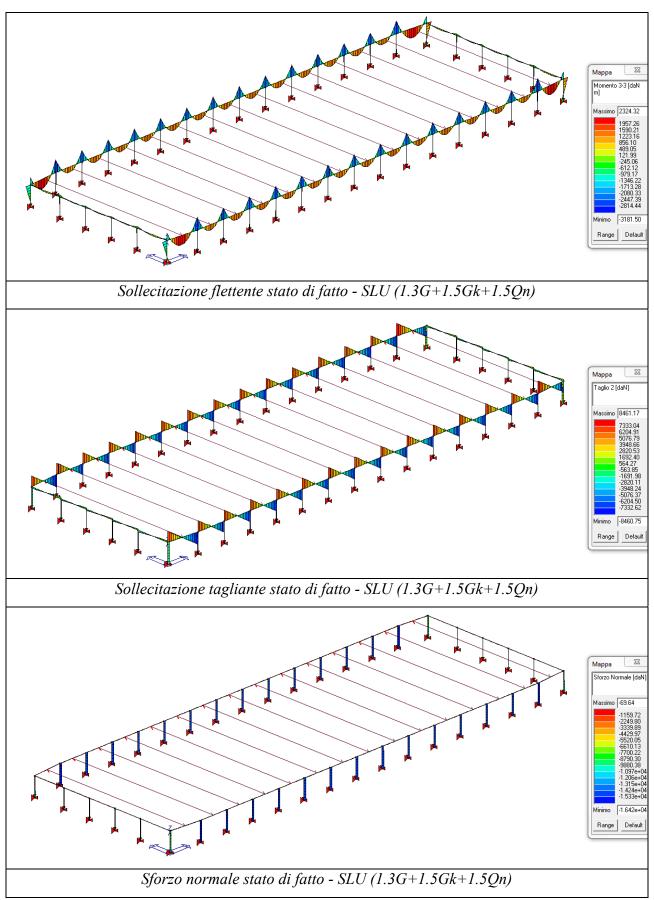
per le verifiche di resistenza agli (SLU) si è utilizzata la combinazione fondamentale (2.5.1)
 del D.M. 14/01/2008

$$1,3G_1 + 1,5G_2 + 1,5(Q_k + \psi_{01}Q_{k2})$$

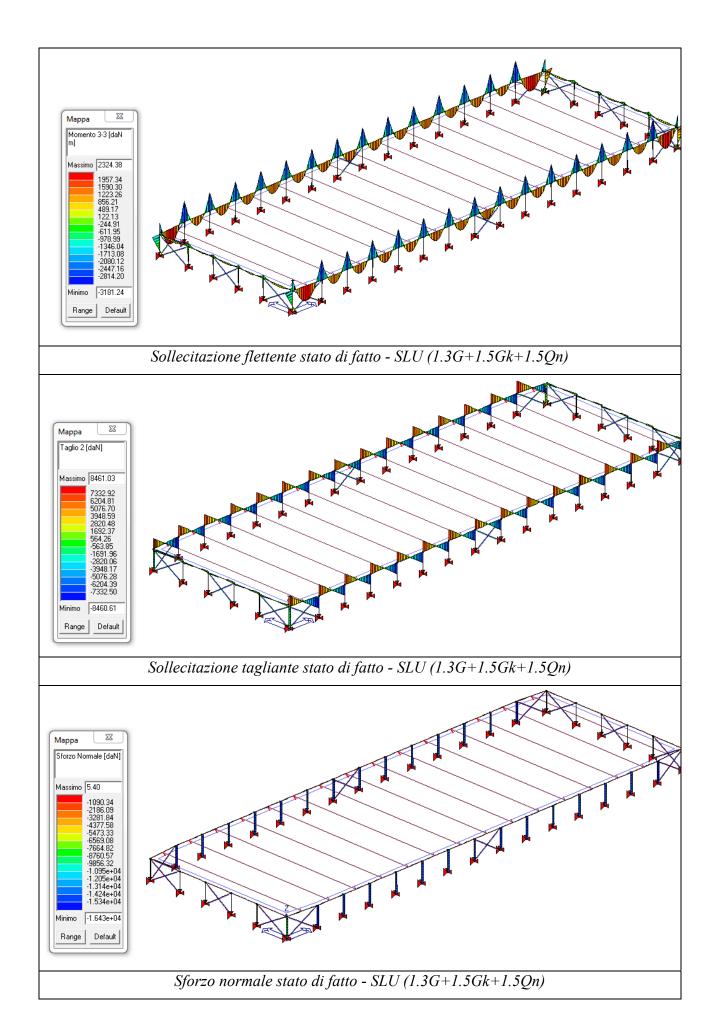
• per le verifiche sismiche si è utilizzata la combinazione sismica (2.5.5) del D.M. 14/01/2008

$$E + G_1 + G_2 + \psi_{21}Q_k + \psi_{22}Q_{k2}$$

Dove:

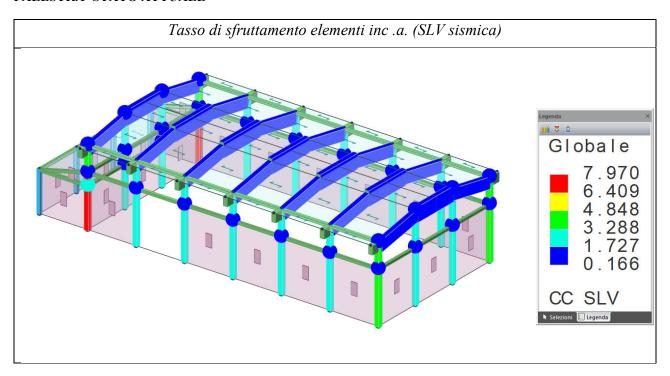

	Ψ_{0i}	Ψ_{1i}	Ψ_{2i}
per ambienti suscettibili di affollamento	0.7	0.7	0.6
per neve a quota <1000m s.l.m.	0.5	0.2	0.0

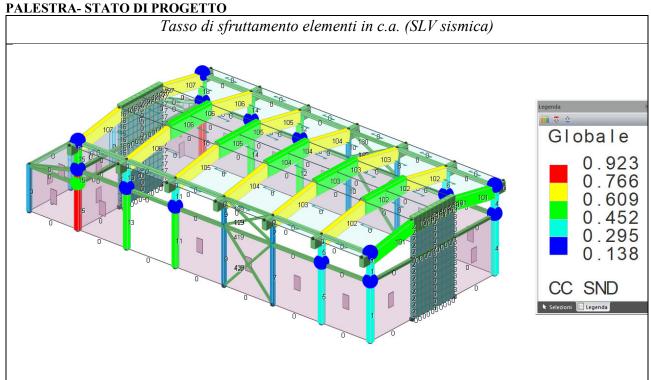
i) CRITERI DI VERIFICA

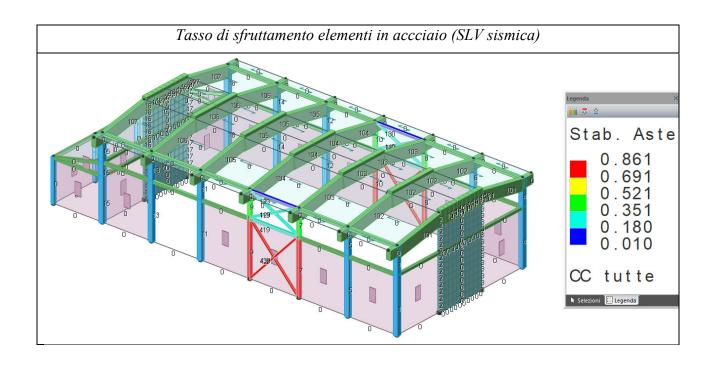

Le verifiche degli elementi strutturali, saranno eseguite mediante il metodo degli Stati Limite; per gli elementi strutturali non soggetti ad elevate sollecitazioni è stata omessa la verifica perché si ritiene manifestamente soddisfatta.

j) RAPPRESENTAZIONE DEFORMATE E SOLLECITAZIONI MAGGIORMENTE SIGNIFICATIVE

SCUOLA - STATO ATTUALE TORRETTA


SCUOLA - STATO DI PROGETTO TORRETTA




Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Le sollecitazioni agli SLU non si modificano significativamente tra stato attuale e di progetto

PALESTRA- STATO ATTUALE

GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI

I calcoli e le verifiche globali del fabbricato – SCUOLA - sono stati eseguiti sugli schemi riportati nelle figure presenti nei paragrafi seguenti mediante l'ausilio dell'elaboratore elettronico utilizzando il codice di calcolo TREMURI prodotto da S.T.A. DATA srl. Il software TREMURI permette di modellare le pareti come un telaio equivalente tridimensionale in cui le pareti sono interconnesse da diaframmi orizzontali di piano (solai). Le funzioni di visualizzazione ed interrogazione sul modello permettono di controllare sia la coerenza geometrica che le azioni applicate rispetto alla realtà fisica. Inoltre la visualizzazione ed interrogazione dei risultati ottenuti dall'analisi quali sollecitazioni, deformazioni, spostamenti dei nodi, reazioni vincolari hanno permesso un immediato controllo con i risultati ottenuti mediante semplici verifiche manuali di cui sono noti i risultati.

Il software Modest utilizzato per il calcolo fabbricato – PALESTRA - permette di modellare analiticamente il comportamento fisico della struttura utilizzando la libreria disponibile di elementi finiti. Le funzioni di visualizzazione ed interrogazione sul modello permettono di controllare sia la coerenza geometrica che le azioni applicate rispetto alla realtà fisica. Inoltre la visualizzazione ed interrogazione dei risultati ottenuti dall'analisi quali sollecitazioni, tensioni, deformazioni, spostamenti, reazioni vincolari hanno permesso un immediato controllo con i risultati ottenuti mediante schemi semplificati di cui è nota la soluzione nell'ambito della Scienza delle Costruzioni. Si è inoltre controllato che le reazioni vincolari diano valori in equilibrio con i carichi applicati, in particolare per i valori dei taglianti di base delle azioni sismiche si è provveduto a confrontarli con valori ottenuti da modelli SDOF semplificati. Le sollecitazioni ottenute sulle travi per i carichi

verticali direttamente agenti sono stati confrontati con semplici schemi a trave continua. Si è inoltre verificato che tutte le funzioni di controllo ed autodiagnostica del software abbiano dato esito positivo.

k) CARATTERISTICHE E AFFIDABILITA' DEL CODICE DI CALCOLO

I calcoli e le verifiche <u>globali del fabbricato</u> sono stati eseguiti mediante l'ausilio dell'elaboratore elettronico utilizzando il programma di calcolo TREMURI, prodotto da S.T.A. DATA srl.

I calcoli e le verifiche sono stati eseguiti mediante l'ausilio dell'elaboratore elettronico utilizzando il programma di calcolo *Modest* della *Tecnisoft s.a.s. - Via F. Ferrucci, 203/C - 59100 Prato* con solutore *Xfinest* dell' *Harpaceas - Viale Richard 1 – Milano*.

Per i meccanismi locali è stato utilizzato il foglio excel della Reluis denominato CINE 1.0.4.

1) STRUTTURE DI FONDAZIONE

Dalla relazione di calcolo e dalle tavole originali del fabbricato in oggetto e dai sondaggi eseguiti sulle fondazioni si è constatato che le fondazioni esistenti sono formate da travi rovesce in c.a. realizzate in opera con sezione a T.

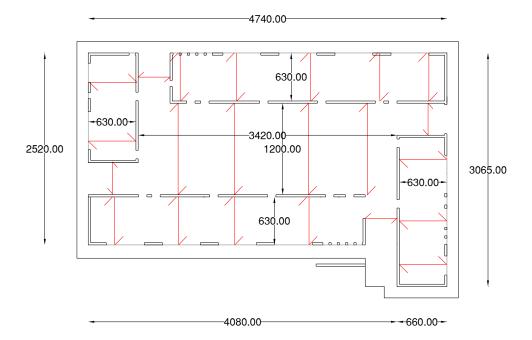
Da una verifica dello stato attuale delle fondazioni del fabbricato è emerso che queste presentano dimensioni tali da garantire una adeguata portanza. Non è pertanto necessario un intervento sulle fondazioni esistenti poiché non si modificano significativamente le pressioni sul terreno.

L'unico intervento che sarà realizzato è la creazione di una nuova fondazione a T rovescia alla base del nuovo muro di irrigidimento che sarà realizzato in sostituzione dell'elemento divisorio esistente. Per quanto rigurda la palestra, in relazione all'intervento proposto, si prevede il rinforzo delle fondazioni sottostanti ai nuovi controventi in quanto si modificano le pressioni sul terreno.

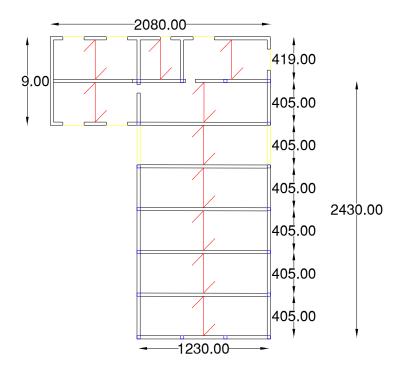
m) CATEGORIA DI INTERVENTO E MOTIVAZIONE SCELTA ADOTTATA

Gli interventi in progetto, rappresentati da interventi estesi su tutto il fabbricato, modificano il comportamento globale dell'edificio stesso e sono finalizzati ad accrescere la capacità di resistenza delle strutture esistenti alle azioni considerate, quindi da potere essere inquadrate in un intervento di adeguamento ai sensi del D.M. 17/1/2018 e Circolare n. 7/CSLLPP del 21 gennaio 2019.

n) ANALISI STORICO CRITICA ED ESITI DEL RILIEVO GEOMETRICO- STRUTTURALE


Dall'analisi storico critica eseguita si evince che l'edificio risale agli anno 1968-70. In questo periodo viene costruito sostanzialmente tutto il complesso. La pratica strutturale è stata depositata alla

prefettura di Ravenna in due fasi (edificio scolastico, palestra) ed è stata successivamente collaudata staticamente tra il 1970 e il 1972. Nella stessa epoca di costruzione della palestra è stato realizzato il collegamento tra l'edificio scolastico e la palestra stessa per mezzo di una struttura metallica. Circa una decina di anni fa è stata eseguita la chiusura con muretti e vetrate della struttura di collegamento tra i due corpi di fabbrica. Infine, a seguito dei risultati ottenuti dell'analisi di vulnerabilità simica eseguita nel 2009, nel 2017 sono stati eseguiti alcuni interventi di rinforzo sulla struttura in c.a. della copertura alta che consistono nel:


- rinforzo a presso-flessione dei pilastri della copertura della scuola eseguito utilizzando il sistema Geosteel della Kerakoll con fasce di tessuto in acciaio galvanizzato;
- rinforzo a taglio di tutti i pilastri della copertura della scuola eseguito utilizzando il sistema Geosteel della Kerakoll con fasce di tessuto in acciaio galvanizzato;
- rinforzo a taglio di tutte le travi 60x42 della copertura alta della scuola mediante l'inserimento a resina di barre di acciaio inclinate.

Dalla documentazione fornita dalla proprietà è stato possibile risalire allo schema strutturale del complesso e parzialmente dei singoli elementi strutturali: fondazioni, impalcati e strutture verticali. All'interno della documentazione oltre alle tavole strutturali, sono presenti anche i giornali dei lavori delle due strutture dalle quali si sono ottenute le dimensioni dei vari particolari architettonici e strutturali, oltre alla tipologia di materiale utilizzato. Per questo materiale si rimanda alla documentazioni depositata in comune.

Per avere una conoscenza più accurata dell'edificio è stato eseguito un rilievo geometrico - strutturale sulle strutture principali e sui solai e coperture. Dalle indagini svolte si è rilevato che l'edificio, ad un piano, adibito a scuola è costituito da muratura portante a due teste, tipo bolognese e malta bastarda, con presenza di cordoli in c.a. a quota dei solai. Le fondazioni sono costituite da travi rovesce in corrispondenza dei muri portanti. Il solaio di piano terra si trova a quota maggiore rispetto il terreno esterno di circa 60cm ed è in opera con altezza di 16cm. Il solaio di sommità, in latero-cemento si trova a quote diverse. Il solaio in corrispondenza delle aule si trova a quota 4m ed ha altezza di 14cm e luce massima di 6,50m, mentre il solaio in corrispondenza del salone centrale si trova a quota 6,45m, ha un'altezza di 42cm ed una luce di 12m, interrotta con un rompi tratta in mezzeria. Questo solaio è rialzato dal solaio di copertura delle aule per mezzo di pilastri di dimensioni 29x29cm ed altezza 83cm presenti lungo tutto il perimetro del salone. Infine, la copertura è formata da tavelloni e muretti ad una testa poggianti sul solaio di sommità in latero-cemento per il salone centrale, mentre nella zona aule la copertura è formata da travi tipo Varese e tavelloni poggianti sui cordoli dell'edificio. Lungo tutto il perimetro dell'edificio corre un cornicione di 1,50cm di sporgenza in cemento armato di spessore 10cm, mentre in corrispondenza dell'ingresso principale è presente una pensilina a sbalzo di dimensioni 4,60m di larghezza e 5,70m di lunghezza.

L'edificio adibito a palestra è formato da una struttura a telaio in cemento armato con pilastri di dimensioni 30x35cm lungo i lati, pilastri 35x35 negli angoli e travi di sommità di altezza variabile e spessore 35cm costruite in opera, tamponata con muratura. La copertura è realizzata con pannelli in cemento autoportanti monodirezionali di luce 3,70m ed altezza 12cm. Le fondazioni sono elementi continui ordinari. I servizi della palestra, invece, sono realizzati con muratura portante a due teste, poggiante su fondazioni continue. In sommità sono presenti cordoli perimetrali in cui sono collegati i solai e la copertura in latero-cemento di spessore 12cm. I cordoli perimetrali sono in altezza di solaio quindi presentano dimensioni 30x12cm. Anche per i servizi la copertura è formata da travi tipo Varese e tavelloni collegati alle murature per mezzo di cordoli perimetrali. Nella zona centrale dei servizi è presente una trave 30x60 che sostiene sia il solaio che la copertura.

Dal rilievo geometrico - strutturale eseguito e dalla tipologia degli elementi strutturali che compongono l'edificio si può affermare che la costruzione riflette lo stato delle conoscenze al tempo della realizzazione; che il corpo di fabbrica non è stato soggetto ad azioni particolari o eccezionali che ne possano compromettere la stabilità, sicurezza e durabilità e che le strutture, non presentano degrado e modificazioni rispetto alla situazione originaria.

o) LIVELLO DI CONOSCENA, FATTORE DI CONFIDENZA E PROPRIETA' MECCANICHE DEI MATERIALI ESISTENTI

Per la valutazione delle opere esistenti è necessario valutare il "livello di conoscenza" che rappresenta la qualità delle informazioni che si hanno a disposizione riguardo alla geometria, alle tipologie strutturali e ai materiali presenti nell'edificio.

Per l'edificio in esame si è deciso di assumere un <u>livello di conoscenza LC2</u>. Per raggiunge tale livello di conoscenza è stato eseguito l'analisi storico-critica completa dell'edificio, il rilievo geometrico completo e indagini estese sui dettagli costruttivi (sommandole a quelle già eseguite durante l'analisi di vulnerabilità sismica del 2009), prove estese sulle caratteristiche meccaniche dei materiali. Sono state eseguite prove sui mattoni e sulla malta (che si allegano). Le prove si considerano esaustive in quanto l'edificio è stato realizzato e completato tra il 1968-1970 utilizzando gli stessi materiali per tutto il fabbricato; inoltre di ha a disposizione le prove sui materiali originarie dell'epoca di costruzione redatte da laboratorio certificato. Per la struttura il raggiungimento di un livello di conoscenza LC2 comporta l'adozione di un *fattore di confidenza FC=1,20*.

La *muratura esistente* risulta caratterizzata dai seguenti parametri:

- Livello di conoscenza attribuito: LC 2
- Fattore di Confidenza: FC=1.20
- Coefficiente correttivo per malta buona (Tabella C.8.5.II Circolare 7/2019) f_m^{0.35}=1.54 da applicare sia ai parametri di resistenza che ai moduli elastici
- Valori di riferimento dei parametri meccanici (Tabella C8.5.1 Circolare 7/2019):

 $f_m = 345 \text{ N/cm}^2$ $\tau_0 = 9 \text{ N/cm}^2$ $E = 1500 \text{ N/mm}^2$ $G = 500 \text{ N/mm}^2$ $w = 18 \text{ kN/m}^3$

Secondo la documentazione disponibile, comprensiva di prove sui materiali e di carico, sono stati impiegati per gli **elementi in c.a. gettati in opera**, calcestruzzo di classe Rck25, acciaio FeB32k per le staffe e FeB44k per le armature longitudinali.

p) CONFRONTO STATO ATTUALE E DI PROGETTO

Gli interventi eseguiti sul corpo di fabbrica comportano l'adeguamento del fabbricato stesso con ζ_E pari o maggiore a 0.8 come richiesto dalla Circolare 7/2019.

2.2. TABULATI DI CALCOLO E VERIFICHE

SCUOLA

Analisi globale Stato di Fatto

Analisi pushover

Tipo di analisi svolta

Al fine di eseguire le dovute verifiche nei riguardi dell'edificio in questione, si è deciso di procedere con l'esecuzione di una analisi statica non lineare.

Le verifiche richieste si concretizzano nel confronto tra la curva di capacità per le diverse condizioni previste e la domanda di spostamento prevista dalla normativa.

La curva di capacità è individuata mediante un diagramma spostamento-taglio massimo alla base.

Metodo di analisi

La modellazione dell'edificio viene realizzata mediante l'inserimento di pareti che vengono discretizzate in macroelementi, rappresentativi di maschi murari e fasce di piano deformabili; i nodi rigidi sono indicati nelle porzioni di muratura che tipicamente sono meno soggette al danneggiamento sismico. Solitamente i maschi e le fasce sono contigui alle aperture, i nodi rigidi rappresentano elementi di collegamento tra maschi e fasce. La concezione matematica che si nasconde nell'impiego di tale elemento, permette di riconoscere il meccanismo di danno, a taglio nella sua parte centrale o a pressoflessione sui bordi dell'elemento in modo da percepire la dinamica del danneggiamento così come si presenta effettivamente nella realtà.

I nodi del modello, sono nodi tridimensionali a 5 gradi di libertà (le tre componenti di spostamento nel sistema di riferimento globale e le rotazioni intorno agli assi X e Y) o nodi bidimensionali a 3 gradi di libertà (due traslazioni e la rotazione nel piano della parete). Quelli tridimensionali vengono usati per permettere il trasferimento delle azioni, da un primo muro a un secondo disposto trasversalmente rispetto al primo. I nodi di tipo bidimensionale hanno gradi di libertà nel solo piano della parete permettendo il trasferimento degli stati di sollecitazione tra i vari punti della parete. Gli orizzontamenti, sono modellati con elementi solaio a tre nodi connessi ai nodi tridimensionali, sono caricabili perpendicolarmente al loro piano dai carichi accidentali e permanenti; le azioni sismiche caricano il solaio lungo la direzione del piano medio. Per questo l'elemento finito solaio viene definito con una rigidezza assiale, ma nessuna rigidezza flessionale, in quanto il comportamento meccanico principale che si intende sondare è quello sotto carico orizzontale dovuto al sisma.

Combinazioni di carico adottate

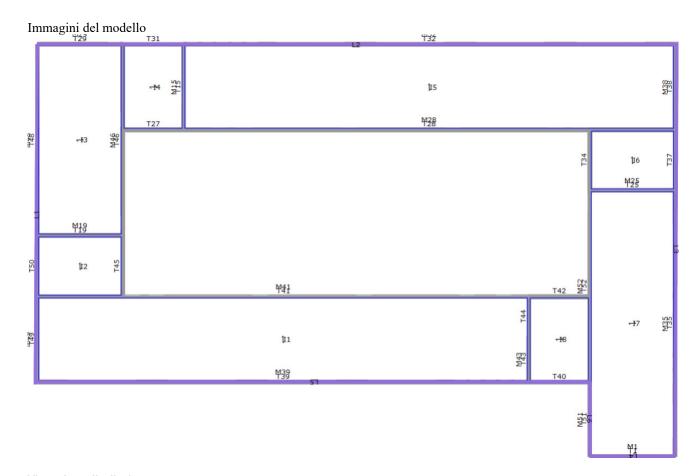
Secondo le prescrizioni da normativa, le condizioni di carico da esaminare devono considerare almeno due distribuzioni di forze d'inerzia, ricadenti l'una nelle distribuzioni principali (Gruppo 1) e l'altra nelle distribuzioni secondarie (Gruppo 2) appresso illustrate.

- distribuzione proporzionale alle Forze statiche (Gruppo 1)
- distribuzione uniforme di forze, da intendersi come derivata da una distribuzione uniforme di accelerazioni lungo l'altezza della costruzione (Gruppo 2);

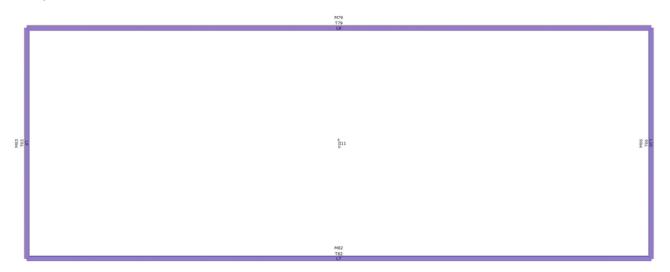
L'analisi, eseguita in controllo di spostamento, procede al calcolo della distribuzione di forze che genera il valore dello spostamento richiesto. L'analisi viene fatta continuare fino a che non si verifica il decadimento del taglio al 80% dal suo valore di picco. Si calcola così il valore dello spostamento massimo alla base dell'edificio generato da quella distribuzione di forze. Questo valore di spostamento costituisce il valore ultimo dell'edificio.

Lo spostamento preso in esame per il tracciamento della curva di capacità è quello di un punto dell'edificio detto nodo di controllo.

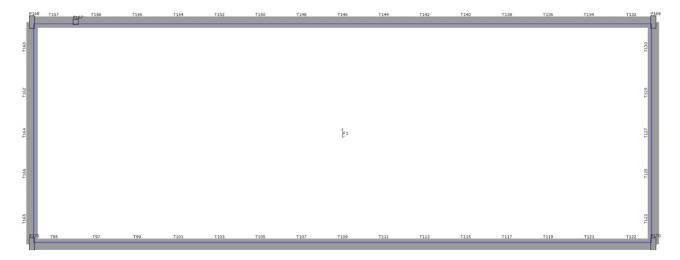
La normativa richiede il tracciamento di una curva di capacità bi-lineare di un sistema equivalente (SDOF). Il tracciamento di tale curva deve avvenire con una retta che, passando per l'origine interseca la curva del sistema reale in corrispondenza del 70% del valore di picco; la seconda retta risulterà parallela all'asse degli spostamenti tale da generare l'equivalenza delle aree tra i diagrammi del sistema reale e quello equivalente.

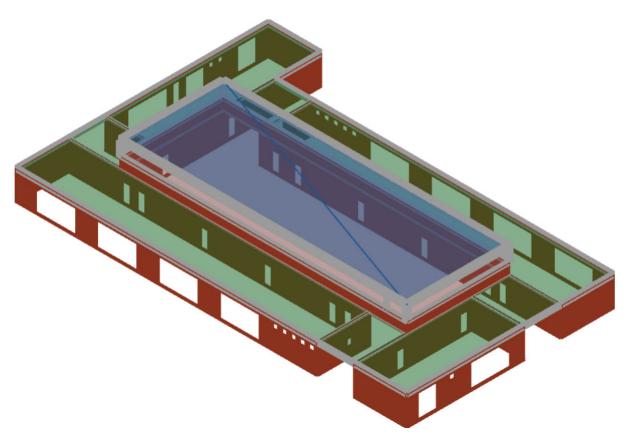

La determinazione della curva relativa al sistema equivalente, permette di determinare il periodo con cui ricavare lo spostamento massimo richiesto dal sisma, secondo gli spettri riportati sulla normativa.

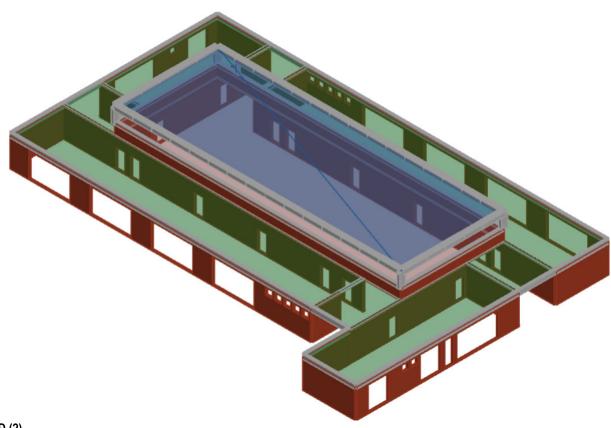
La normativa definisce una eccentricità accidentale del centro delle masse pari al 5% della massima dimensione dell'edificio in direzione perpendicolare al sisma.


In base alla tipologia dell'edificio e alle scelte progettuali che si ritengono più idonee, si può decidere la condizione di carico sismico da prendere in esame.

- Carico sismico: Individua quale delle due tipologie di distribuzioni (proporzionale alle masse o al primo modo) prendere in esame.
- Direzione: Individua la direzione lungo cui viene caricata la struttura (X o Y del sistema globale) dal carico sismico.


Al fine di individuare la condizione di carico sismico più gravosa, si è deciso di eseguire le analisi distinte per tipologia di carico, direzione del sisma e di eventuali eccentricità accidentali.


Vista pianta livello 1


Vista pianta livello 2

Vista pianta livello 2 tetto

Vista 3D (1)

Vista 3D (2)

Parametri di progetto

Per la definizione dell'azione sismica si fa riferimento a:

Categoria di sottosuolo: C
Categoria topografica: T1
Longitudine: 12.0797
Latitudine: 44.3601

• Vita nominale: Opere ordinarie VN >= 50 anni

• Classe d'uso III - Edifici con grandi affollamenti, infrastrutture importanti

Gli spettri di risposta, sono definiti in funzione del reticolo di riferimento definito nella "Tabella 1" (parametri spettrali) in allegato alle Norme Tecniche.

Tale tabella fornisce, in funzione delle coordinate geografiche (latitudine, longitudine), i parametri necessari a tracciare lo spettro. I parametri forniti dal reticolo di riferimento sono:

a_g: accelerazione orizzontale massima del terreno;

F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

La trilogia di valori qui descritta, è definita per un periodo di ritorno assegnato (TR), definito in base alla probabilità di superamento di ciascuno degli stati limite.

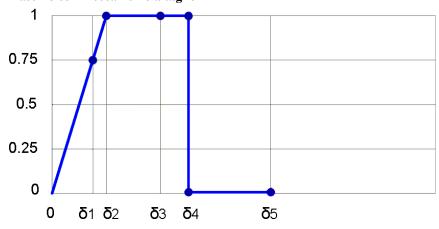
Tali valori, saranno pertanto definiti per ciascuno degli stati limite esaminati (vedere tabella).

Lo spettro sismico dipende anche dalla "Classe del suolo" e dalla "categoria topografica" (vedere tabella).

	Ag [m/s2]	F0	Tc* [s]	Tr	Ss	Tb [s]	Tc [s]	Td [s]
SLC	2.66	2.42	0.31	1462.00	1.31	0.16	0.48	2.69
SLV	2.07	2.42	0.30	712.00	1.39	0.16	0.47	2.45
SLD	0.82	2.44	0.28	75.00	1.50	0.15	0.45	1.93
SLO	0.65	2.44	0.27	45.00	1.50	0.15	0.44	1.87

Descrizione dei materiali e del loro comportamento

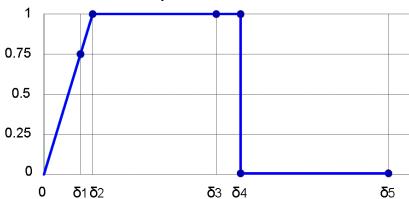
Comportamento meccanico della muratura


Le proprietà meccaniche del materiale muratura sono definite in modo da individuarne al meglio il comportamento in campo non lineare.

Le caratteristiche principali sono:

- Rigidezza iniziale secondo le caratteristiche elastiche (fessurate) del materiale;
- Redistribuzione delle sollecitazioni interne all'elemento tali da garantire l'equilibrio;
- Settaggio dello stato di danno secondo i parametri globali e locali;
- Degradazione della rigidezza nel ramo plastico;
- Controllo di duttilità mediante la definizione di drift massimo (δu) differenziato secondo quanto previsto nelle normative vigenti a seconda del meccanismo di danneggiamento agente sul pannello
- Eliminazione dell'elemento, al raggiungimento delle condizioni limite senza interruzione dell'analisi. Il comportamento non lineare si attiva quando un valore di forza raggiunge il suo massimo valore definito come il minimo fra i criteri di resistenza pressoflessione e taglio.

Il comportamento dei maschi murari associati ai meccanismi di taglio e pressoflessione può essere descritto attraverso diversi tratti che rappresentano i progressivi livelli di danno.


Maschio con meccanismo a taglio

Il comportamento del maschio murario a taglio si può descrivere attraverso i seguenti tratti, rappresentativi dei progressivi livelli di danno relativi al diagramma precedente:

0 - δ_1	elasticità
δ_1 - δ_2	incipiente di plasticità
δ_2 - δ_3	plastico per taglio
δ_3 - δ_4	incipiente rottura per taglio
δ_4 - δ_5	rottura per taglio
δ_5 - ∞	crisi grave

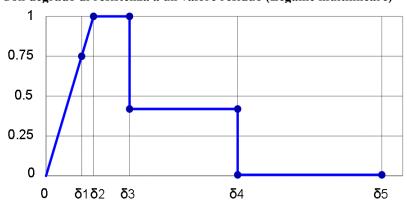
Maschio con meccanismo a pressoflessione

Il comportamento del maschio murario pressoflessione, invece, si può descrivere attraverso i seguenti tratti:

0 - δ1	elasticità
δ1 - δ2	incipiente di plasticità
δ2 - δ3	plastico per pressoflessione
δ3 - δ4	incipiente rottura per pressoflessione
δ4 - δ5	rottura per pressoflessione
δ5 - ∞	crisi grave

Alcuni tra questi livelli di rottura sono necessari per descrivere con maggiore cura il progredire della crisi permettendo una più accurata previsione degli interventi e del livello di degrado della muratura:

- Incipiente plasticità: Quando un elemento si trova ancora in campo elastico ma è prossimo alla plasticità
- Incipiente rottura: Quando un elemento è in campo plastico ma è prossimo alla rottura
- Crisi grave: Quando in seguito alla rottura dell'elemento le deformazioni diventano talmente significative da poter generare un crollo locale.


Il software mette a disposizione tre categorie di legame:

- Con degrado di resistenza a un valore residuo (Legame multilineare)
- Con resistenza pari al valore residuo (Legame bilineare)
- Priva di resistenza residua

Tra queste le categorie di legame utilizzate all'interno del progetto in esame sono:

• Con degrado di resistenza a un valore residuo (Legame multilineare)

Con degrado di resistenza a un valore residuo (Legame multilineare)

Questo tipo di legame è definito nella circolare al §C8.7.1.3.1 assumendo:

 $\delta 1: 0.75 * \delta 2$

δ2: deformazione in corrispondenza del limite elastico definito dalla rigidezza e resistenza limite

 $\delta 3: 0.005$

 $\delta 4: 0.015$

δ5: 2* δ4 Questa deformazione rappresenta lo stato di "crisi grave" non direttamente richiesta nella normativa ma utile come avviso per il progettista.

Nome	Tipo	Colore	Descrizione
Muratura	Muratura		
C20/25	Calcestruzzo		
B450	Acciaio armatura		NTC08

Muratura

	Condizione del materiale	1 6		Eh [N/mm2]	[N/mm2]		fm [N/cm2]
Muratura	Esistente	Muratura irregolare (Turnsek/Cacovic)	2,310.00	2,310.00	770.00	18	531.30

Condizione del materiale: Esistente

Tipo legame: Muratura irregolare (Turnsek/Cacovic)

Nome	fk [N/cm2]	τ [N/cm2]	FC	γm
Muratura	309.93	13.86	1.20	3.00

Calcestruzzo

Nome	E [N/mm2]		1		fck [N/mm2]	γс	α cc
C20/25	29,962.00	12,484.00	25	28.0	20.0	1.50	0.85

A 001010	armatura
Acciaio	armatura

	Nome	Е	G	Peso specifico	fym	fyk	γs
--	------	---	---	----------------	-----	-----	----

	[N/mm2]	[N/mm2]	[kN/m3]	[N/mm2]	[N/mm2]	
B450	206,000.00	79,231.00	79		450.0	1.15

Combinazione delle azioni

Carico Sismico:

Le verifiche allo stato limite ultimo (SLV) e allo stato limite di esercizio (SLD; SLO); devono essere effettuate per la seguente combinazione [Norme Tecniche 2018 §2.5.3].

$$E + G_{k1} + G_{k2} + \sum_{i} \Psi_{2i} Q_{Ki}$$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_{k1} + G_{k2} + \sum_{i} \Psi_{2i} Q_{Ki}$$

Carico Statico:

La verifica allo stato limite ultimo per carichi statici viene condotta con la seguente combinazione dei carichi. $\gamma_{G1}G_{k1} + \gamma_{G2}G_{k2} + \gamma_{Q}\Psi_{0}Q_{k}$

dove:

E azione sismica per lo stato limite in esame;

 $\begin{array}{ll} G_{k1} & \text{peso proprio di tutti gli elementi strutturali;} \\ G_{k2} & \text{peso proprio di tutti gli elementi non strutturali;} \\ Q_{Ki} & \text{valore caratteristico della azione variabile;} \end{array}$

 Ψ_2 coefficiente di combinazione;

 Ψ_0 coefficiente di combinazione per i carichi variabili

 γ_{G1} ; γ_{G2} ; γ_{Q} : coefficienti parziali di sicurezza

I valori dei vari coefficienti sono scelti in base alla destinazione d'uso dei vari solai secondo quanto indicato nella norma. [Norme Tecniche 2018 Tabella 2.5.1].

N. Carico	Livell	Tipo		Gk2 [daN/m2]	Qk [daN/m2]	ψ0	ψ2	Note
1	1	Lineare [daN/m]	840			0.50	0.00	-
2	1	Lineare [daN/m]	840	110	600	0.50	0.00	_
3	1	Lineare [daN/m]	840	110	600	0.50	0.00	_
4	1	Lineare [daN/m]	840	110	600	0.50	0.00	-
5	1	Lineare [daN/m]	840	110	600	0.50	0.00	-
6	1	Lineare [daN/m]	840	110	600	0.50	0.00	-
7	2	Lineare [daN/m]	390	60	480	0.50	0.00	-
8	2	Lineare [daN/m]	390	60	480	0.50	0.00	-
9	2	Lineare [daN/m]	390	60	480	0.50	0.00	-
10	2	Lineare [daN/m]	390	60	480	0.50	0.00	_

Note

CDM: Considera solo contributo dinamico della massa

N. Solaio	Gk1 [daN/m2]	Gk2 [daN/m2]	_~	Carico dominante	ψ0	ψ2
1	130	30	1	No	0.00	0.00
2	130	30	1	No	0.00	0.00
3	130	30	1	No	0.00	0.00
4	130	30	1	No	0.00	0.00
5	130	30	1	No	0.00	0.00
6	130	30	1	No	0.00	0.00
7	130	30	1	No	0.00	0.00
8	130	30	1	No	0.00	0.00
11	1	1	1	No	0.00	0.00

N. Falda	Gk1	Gk2	Qk	Carico	ψ0	ψ2
	[daN/m2]	[daN/m2]	[daN/m2]	dominante		

1	450	100	No	0.50	0.00

Verifiche per gli stati limite considerati

Secondo le indicazioni da normativa si devono eseguire le seguenti verifiche:

Stato limite Collasso (SLC):

$$D_{max}^{SLC} \leq D_u^{SLC}$$

 D_{max}^{SLC} : Spostamento massimo richiesto dalla normativa individuato dallo spettro elastico.

: Spostamento massimo offerto dalla struttura corrispondente al minore tra:

- il valore del taglio di base residuo pari all'80% di quello massimo 1)
- il valore corrispondente al raggiungimento della soglia limite della deformazione angolare a SLC in tutti i maschi murari verticali di qualunque livello in una qualunque parete ritenuta significativa ai fini della sicurezza.

$$q* < 4.0$$

q*: rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente

Stato limite Vita (SLV):

$$D_{max}^{SLV} \leq D_{u}^{SLV}$$

D_{max}: Spostamento massimo richiesto dalla normativa individuato dallo spettro elastico.

 D_u^{SLV}

: Spostamento massimo offerto dalla struttura individuato in corrispondenza di 0.75

q* < 3.0q*: rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente

Stato limite di Danno (SLD):
$$D_{max}^{SLD} \leq D_{u}^{SLD}$$

D_max : Spostamento massimo richiesto dalla normativa, calcolato in base allo spettro sismico definito per lo stato limite di danno.

 D_u^{SLD}

: Spostamento minore tra:

- quello corrispondente al limite elastico della bilineare equivalente definita a partire dallo spostamento ultimo a 1) SLC
- quello corrispondente al raggiungimento della resistenza massima a taglio in tutti i maschi murari verticali in un qualunque livello di una qualunque parte ritenuta significativa ai fini dell'uso della costruzione (e comunque non prima dello spostamento per il quale si raggiunge un taglio di base pari a 0.7500 del taglio di base massimo)

Stato limite di Operatività (SLO):

$$D_{max}^{SLO} \leq D_{u}^{SLO}$$

 D_{max}^{SLO} : Spostamento massimo richiesto dalla normativa, calcolato in base allo spettro sismico definito per lo stato limite di operatività.

: Spostamento pari a 0.6670 di quello allo SLD.

Vulnerabilità sismica

Per ciascuno stato limite eseguito viene calcolato l'indice di rischio α (α_{SLC} , α_{SLD} , α_{SLD} , α_{SLD}). Questi parametri vengono calcolati come indicato nel seguito:

$$\alpha_{SLC} = \frac{p_{GA_{CLC}}}{p_{GA_{DLC}}};$$

$$\alpha_{SLV} = \frac{PGA_{CLV}}{PGA_{DLV}};$$

$$\alpha_{SLD} = \frac{PGA_{CLD}}{PGA_{DLD}}$$

$$\alpha_{SLO} = \frac{PGA_{CLO}}{PGA_{DLO}}$$
;

Accelerazioni di capacità: l'entità massima delle azioni, considerate nelle combinazioni di progetto previste, che la struttura è capace di sostenere.

- PGA_{CLC} :accelerazione di capacità corrispondente a SLC
- PGA_{CLV} :accelerazione di capacità corrispondente a SLV
- PGA_{CLD}: accelerazione di capacità corrispondente a SLD
- PGA_{CLO}: accelerazione di capacità corrispondente a SLO

Accelerazioni di domanda : Valori di riferimento delle accelerazioni dell'azione sismica

Tali valori vengono definiti a partire dal carico sismico definito nella forma dello spettro.

- PGA_{DLC} :accelerazione di picco al suolo corrispondente a SLC
- PGA_{DLV} :accelerazione di picco al suolo corrispondente a SLV
- PGA_{DLD}: accelerazione di picco al suolo corrispondente a SLD
- PGA_{DLO}: accelerazione di picco al suolo corrispondente a SLO

Dettaglio verifiche

N.	Dir. sisma	Carico sismico	Ecc.	Dmax	Du SLC	q* SLC	SLC	Dmax	Du SLV	q* SLV	SLV
			[cm]	SLC	[cm]		ver.	SLV	[cm]		ver.
1	+37	II .C	0.0	[cm]	0.66	0.72	G)	[cm]	0.40	0.61	G,
1	+X	Uniforme	0.0	0.17	0.66		Sì	0.14	0.49	0.61	Sì
2	+X	Forze statiche	0.0	0.16				0.13			Sì
3	-X	Uniforme	0.0	0.13	0.77	0.69		0.11	0.57	0.58	
4	-X	Forze statiche	0.0	0.14	0.73	0.72	Sì	0.12	0.55	0.60	Sì
5	+Y	Uniforme	0.0	0.94	0.77	1.93	No	0.70	0.58	1.62	No
6	+Y	Forze statiche	0.0	1.02	0.78	2.01	No	0.76	0.58	1.69	No
7	-Y	Uniforme	0.0	1.05	1.51	1.92	Sì	0.78	1.13	1.61	Sì
8	-Y	Forze statiche	0.0	1.10	0.92	1.95	No	0.81	0.69	1.62	No
9	+X	Uniforme	151.9	0.23	2.22	1.24	Sì	0.12	1.66	1.04	Sì
10	+X	Uniforme	-151.9	0.11	1.02	0.63	Sì	0.09	0.77	0.53	Sì
11	+X	Forze statiche	151.9	0.30	0.65	0.94	Sì	0.25	0.49	0.79	Sì
12	+X	Forze statiche	-151.9	0.12	1.11	0.64	Sì	0.10	0.83	0.54	Sì
13	-X	Uniforme	151.9	0.23	0.50	0.91	Sì	0.19	0.37	0.77	Sì
14	-X	Uniforme	-151.9	0.12	0.84	0.68	Sì	0.10	0.63	0.57	Sì
15	-X	Forze statiche	151.9	0.25	0.50	0.95	Sì	0.21	0.37	0.80	Sì
16	-X	Forze statiche	-151.9	0.13	0.88	0.68	Sì	0.11	0.66	0.57	Sì
17	+Y	Uniforme	235.5	0.87	0.85	1.72	No	0.63	0.64	1.44	Sì
18	+Y	Uniforme	-235.5	1.01	0.76	2.16	No	0.76	0.57	1.81	No
19	+Y	Forze statiche	235.5	0.94	0.84	1.78	No	0.69	0.63	1.50	No
20	+Y	Forze statiche	-235.5	1.09	0.76	2.24	No	0.83	0.57	1.88	No
21	-Y	Uniforme	235.5	0.99	1.07	1.76	Sì	0.72	0.80	1.48	Sì
22	-Y	Uniforme	-235.5	1.08	1.37	2.10	Sì	0.82	1.03	1.77	Sì
23	-Y	Forze statiche	235.5	1.05	1.26	1.79	Sì	0.76	0.94	1.48	Sì
24	-Y	Forze statiche	-235.5	1.15	1.48	2.18	Sì	0.86	1.11	1.81	Sì

N.	Dir. sisma	Carico sismico	Ecc.	Dmax	Dd SLD	SLD	Dmax	Do SLO	SLO
			[cm]	SLD [cm]	[cm]	ver.	SLO [cm]	[cm]	ver.
1	+X	Uniforme	0.0	0.06	0.23	Sì	0.05	0.15	Sì
2	+X	Forze statiche	0.0	0.06	0.21	Sì	0.05	0.14	Sì
3	-X	Uniforme	0.0	0.05	0.18	Sì	0.04	0.12	Sì
4	-X	Forze statiche	0.0	0.05	0.19	Sì	0.04	0.13	Sì
5	+Y	Uniforme	0.0	0.17	0.23	Sì	0.13	0.16	Sì
6	+Y	Forze statiche	0.0	0.18	0.25	Sì	0.14	0.16	Sì
7	-Y	Uniforme	0.0	0.19	0.28	Sì	0.15	0.18	Sì
8	-Y	Forze statiche	0.0	0.20	0.29	Sì	0.16	0.19	Sì
9	+X	Uniforme	151.9	0.05	0.11	Sì	0.04	0.07	Sì
10	+X	Uniforme	-151.9	0.04	0.17	Sì	0.03	0.11	Sì
11	+X	Forze statiche	151.9	0.11	0.31	Sì	0.09	0.21	Sì
12	+X	Forze statiche	-151.9	0.04	0.19	Sì	0.04	0.12	Sì
13	-X	Uniforme	151.9	0.08	0.25	Sì	0.07	0.17	Sì
14	-X	Uniforme	-151.9	0.04	0.17	Sì	0.04	0.12	Sì

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

15	-X	Forze statiche	151.9	0.09	0.27	Sì	0.08	0.18	Sì
16	-X	Forze statiche	-151.9	0.05	0.19	Sì	0.04	0.13	Sì
17	+Y	Uniforme	235.5	0.16	0.26	Sì	0.13	0.17	Sì
18	+Y	Uniforme	-235.5	0.17	0.21	Sì	0.14	0.14	Sì
19	+Y	Forze statiche	235.5	0.18	0.27	Sì	0.14	0.18	Sì
20	+Y	Forze statiche	-235.5	0.18	0.22	Sì	0.15	0.15	Sì
21	-Y	Uniforme	235.5	0.19	0.30	Sì	0.15	0.20	Sì
22	-Y	Uniforme	-235.5	0.19	0.25	Sì	0.15	0.17	Sì
23	-Y	Forze statiche	235.5	0.20	0.31	Sì	0.16	0.21	Sì
24	-Y	Forze statiche	-235.5	0.20	0.26	Sì	0.16	0.17	Sì

N.	Dir. sisma	Carico sismico	Ecc.	α SLC	α SLV	α SLD	α SLO
1	+X	Uniforme	0.0	1.964	2.083	3.780	3.102
2	+X	Forze statiche	0.0	2.056	2.167	3.739	3.069
3	-X	Uniforme	0.0	2.367	2.475	3.950	3.244
4	-X	Forze statiche	0.0	2.204	2.311	3.797	3.117
5	+Y	Uniforme	0.0	0.884	0.901	1.404	1.162
6	+Y	Forze statiche	0.0	0.842	0.858	1.371	1.139
7	-Y	Uniforme	0.0	1.285	1.267	1.454	1.209
8	-Y	Forze statiche	0.0	0.892	0.914	1.444	1.200
9	+X	Uniforme	151.9	3.236	2.893	2.213	1.817
10	+X	Uniforme	-151.9	3.087	3.172	4.353	3.576
11	+X	Forze statiche	151.9	1.387	1.468	2.886	2.365
12	+X	Forze statiche	-151.9	3.074	3.149	4.255	3.495
13	-X	Uniforme	151.9	1.374	1.473	2.982	2.445
14	-X	Uniforme	-151.9	2.581	2.681	4.043	3.321
15	-X	Forze statiche	151.9	1.297	1.391	2.874	2.356
16	-X	Forze statiche	-151.9	2.552	2.649	4.015	3.297
17	+Y	Uniforme	235.5	0.988	1.009	1.582	1.303
18	+Y	Uniforme	-235.5	0.833	0.844	1.257	1.045
19	+Y	Forze statiche	235.5	0.933	0.952	1.539	1.279
20	+Y	Forze statiche	-235.5	0.791	0.801	1.235	1.026
21	-Y	Uniforme	235.5	1.051	1.060	1.582	1.315
22	-Y	Uniforme	-235.5	1.178	1.159	1.326	1.102
23	-Y	Forze statiche	235.5	1.126	1.139	1.579	1.312
24	-Y	Forze statiche	-235.5	1.198	1.187	1.296	1.077

Dalla tabella riassuntiva dei risultati sopra riportata si desume che le verifiche risultano non soddisfatte, le analisi più significative sono la n° . 15 e la n° . 20 , rispettivamente per le direzioni X ed Y .

La scelta di tali analisi come analisi "significative" è fatta in base alla ricerca del minore valore del parametro di vulnerabilità sismica.

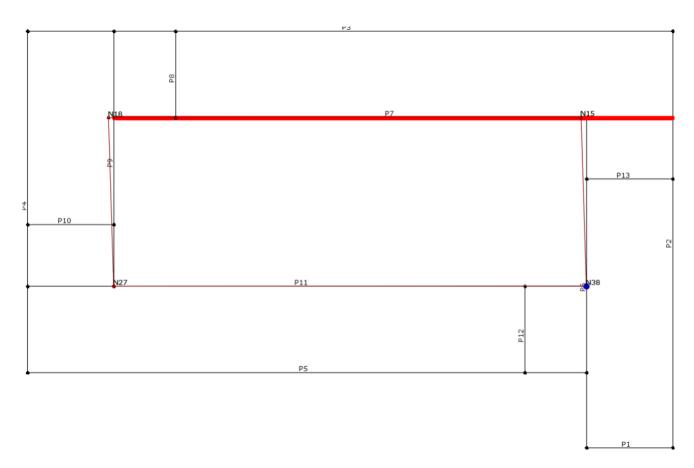
Riportiamo qui di seguito i dettagli delle analisi sopra citate.

Sintesi dei risultati

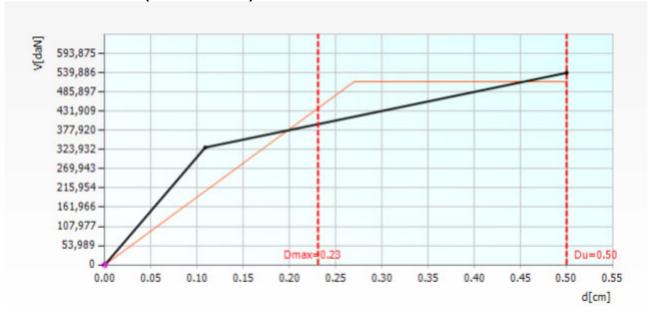
Legenda risultati

	C.A.
Integro	
Rottura per taglio	
Plastico presso flessione	
Rottura presso flessione	
Rottura per compressione	
Rottura per trazione	
Rottura per taglio	
	Legno
Integro	
Rottura presso flessione	
Rottura per compressione	
Rottura per trazione	
	Acciaio
Integro	
Plastico presso flessione	
Plastico per compressione	
Plastico per trazione	
Elemento non efficace	

	Muratura
Integro	
Incipiente plasticità	
Plastico per taglio	
Incipiente rottura per taglio	
Rottura per taglio	
Plastico presso flessione	
Incipiente rottura presso flessione	
Rottura presso flessione	
Crisi grave	
Rottura per compressione	
Rottura per trazione	
Rottura in fase elastica	
Elemento non efficace	


Analisi sismica n. 15 Direzione X

Ritorno in fase elastica



Deformata Pianta

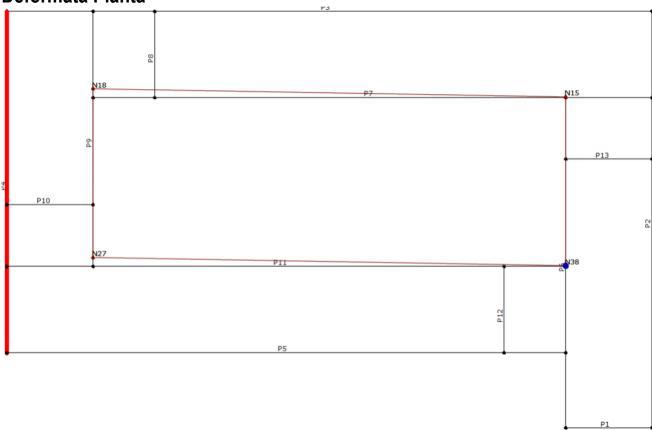
Vulnerabilità Sismica

	-						TRc	TR=cost		
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA
				[m/s2]	(TR)		, ,	(TR)	[m/s2]	
					[m/s2]					
SLC	> 2475	1462	> 1.6929	2.6644	3.1765	2.42	0.32	1.1922	3.4546	1.2966
SLV	> 2475	712	> 3.4761	2.0738	3.1765	2.42	0.32	1.5317	2.8838	1.3906
SLD	1959	75	26.1200	0.8152	2.9371	2.42	0.32	3.6029	2.3430	2.8741

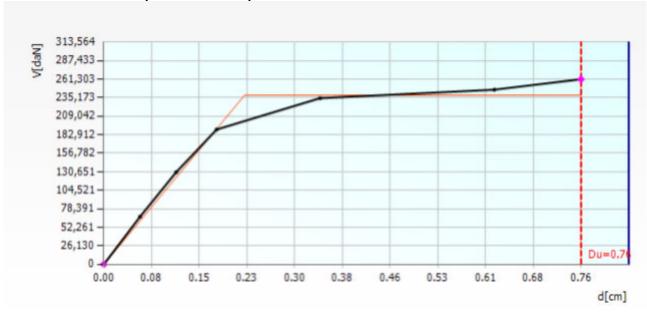
SLO	398	45	8.8444	0.6543	1.6657	2.42	0.30	2.5457	1.5418	2.3563

I valori delle PGA riportati sono da ritenersi calcolati su suolo rigido.

Il medesimo valore su suolo di riferimento è ottenibile moltiplicando gli stessi per (SS*St); i corrispondenti valori nella tabella seguente.


							TRc		TR=c	cost
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA
				[m/s2]	(TR)			(TR)	[m/s2]	
					[m/s2]					
SLC	> 2475	1462	> 1.6929	3.4787	3.9066	2.42	0.32	1.1230	4.5105	1.2966
SLV	> 2475	712	> 3.4761	2.8889	3.9066	2.42	0.32	1.3522	4.0173	1.3906
SLD	1959	75	26.1200	1.2228	3.7162	2.42	0.32	3.0391	3.5145	2.8741
SLO	398	45	8.8444	0.9815	2.4211	2.42	0.30	2.4667	2.3127	2.3563

Analisi sismica n. 20 Direzione Y


Analisi sismica n. 20 Parete 4 Sottopasso 7

Deformata Pianta

Curva Pushover (analisi n. 20)

Vulnerabilità Sismica

		-					TRc		TR=c	cost
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA
				[m/s2]	(TR)			(TR)	[m/s2]	
					[m/s2]					
SLC	593	1462	0.4056	2.6644	1.9394	2.42	0.30	0.7279	2.1068	0.7907
SLV	351	712	0.4930	2.0738	1.5833	2.41	0.30	0.7635	1.6615	0.8012
SLD	121	75	1.6133	0.8152	1.0075	2.43	0.29	1.2359	1.0070	1.2352
SLO	47	45	1.0444	0.6543	0.6681	2.44	0.27	1.0210	0.6717	1.0265

I valori delle PGA riportati sono da ritenersi calcolati su suolo rigido.

Il medesimo valore su suolo di riferimento è ottenibile moltiplicando gli stessi per (SS*St); i corrispondenti valori nella tabella seguente.

							TRc		TR=c	TR=cost	
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA	
				[m/s2]	(TR)			(TR)	[m/s2]		
					[m/s2]						
SLC	593	1462	0.4056	3.4787	2.7403	2.42	0.30	0.7877	2.7507	0.7907	
SLV	351	712	0.4930	2.8889	2.3221	2.41	0.30	0.8038	2.3145	0.8012	
SLD	121	75	1.6133	1.2228	1.5112	2.43	0.29	1.2359	1.5105	1.2352	
SLO	47	45	1.0444	0.9815	1.0021	2.44	0.27	1.0210	1.0075	1.0265	

Conclusioni

Analisi sismica n. 15 Direzione X

Analisi sismica n. 20 Direzione Y

Stato limite	α PGA (TR)	αTR	α PGA (TR)	αTR
SLC	1.1922	> 1.6929	0.7279	0.4056

(*) Tutti i valori di α_{TR} sono da ritenersi calcolati come α_{TR} =TR_C/TR_D (privi di qualsiasi esponente correttivo).

In base alla tipologia di edificio si assume $\zeta_{E_lim}\!\!=\!-1.000$

La verifica non risulta superata, la condizione più gravosa si ha in corrispondenza della direzione [Y] del sisma.

Allegati

Elementi di struttura

Livello 1

Pannello + Cordolo C.A. (1)

N.	Parete	Materiale	Rinforzo	Quota	Altezza	Spessore	Materiale	Materiale	Quota	Base	Altezza
		pannello		pannello	[cm]	[cm]	calcestruzzo	acciaio	cordolo	sezione	sezione
				[cm]					[cm]	[cm]	[cm]
1	1	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
35	2	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
38	2	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
29	3	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
32	3	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
48	4	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
49	4	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
39	5	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
51	6	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
52	6	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	14.0
28	7	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
15	8	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
46	9	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
19	10	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
41	11	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	14.0
43	12	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	14.0
25	13	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0

Pannello + Cordolo C.A. (2)

N.	Parete	Area	J	Af intrad.	Af estrad.	N. barre	N. barre	Copriferro	Passo	Area	Porzione
		[cm2]	[cm4]	[cm2]	[cm2]	intrad.	Estrad.	[cm]	staffe	staffe	deformabile
									[cm]	[cm2]	
1	1	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
35	2	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
38	2	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
29	3	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
32	3	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
48	4	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
49	4	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
39	5	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
51	6	1,400.00	291,666.66	1.57	1.57	2	2	2.0	33	0.57	0.50
52	6	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
28	7	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
15	8	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
46	9	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
19	10	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
41	11	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
43	12	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
25	13	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50

Trave C.A. (1)

N.	Parete	Materiale calcestruzzo	Materiale acciaio	Quota I [cm]	Quota J [cm]	Base sezione [cm]	Altezza sezione [cm]	J [cm4]
37	2	C20/25	B450	350	350	28.0	50.0	291,666.66
31	3	C20/25	B450	350	350	28.0	50.0	291,666.66
50	4	C20/25	B450	350	350	28.0	50.0	291,666.66
40	5	C20/25	B450	350	350	28.0	50.0	291,666.66
34	6	C20/25	B450	350	350	30.0	14.0	6,860.00
27	7	C20/25	B450	350	350	30.0	14.0	6,860.00
45	9	C20/25	B450	350	350	30.0	14.0	6,860.00
42	11	C20/25	B450	350	350	30.0	14.0	6,860.00
44	12	C20/25	B450	350	350	28.0	14.0	6,402.67

Trave C.A. (2)

Trave	C.A. (2)						
N.	Parete	Af	Af	N. barre	N. barre	Copriferro	Passo	Area staffe
		intradosso	estradosso	intradosso	estradosso	[cm]	staffe	[cm2]
		[cm2]	[cm2]				[cm]	
37	2	1.57	1.57	2	2	2.0	33	0.57
31	3	1.57	1.57	2	2	2.0	33	0.57
50	4	1.57	1.57	2	2	2.0	33	0.57
40	5	1.57	1.57	2	2	2.0	33	0.57
34	6	1.57	1.57	2	2	2.0	33	0.57
27	7	1.57	1.57	2	2	2.0	33	0.57
45	9	1.57	1.57	2	2	2.0	33	0.57
42	11	1.57	1.57	2	2	2.0	33	0.57
44	12	2.26	2.26	2	2	2.0	33	0.57

Solaio

N.	Quota	Spessore	G	Ex	Ey	Scarico masse	Tipo
	[cm]	[cm]	[N/mm2]	[N/mm2]	[N/mm2]		
1	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
2	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
3	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
4	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
5	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
6	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
7	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento
8	350	4.0	1,000.00	17,121.14	0.00	Monodirezionale	Laterocemento

Livello 2

Pannello + Cordolo C.A. (1)

N.	Parete	Materiale	Rinforzo	Quota	Altezza	Spessore	Materiale	Materiale	Quota	Base	Altezza
		pannello		pannello	[cm]	[cm]	calcestruzzo	acciaio	cordolo	sezione	sezione
				[cm]					[cm]	[cm]	[cm]
86	6	Muratura	_	480	130	28.0	C20/25	B450	480	28.0	40.0
79	7	Muratura	_	480	130	28.0	C20/25	B450	480	28.0	40.0
83	9	Muratura	_	480	130	28.0	C20/25	B450	480	28.0	40.0
82	11	Muratura	_	480	130	28.0	C20/25	B450	480	28.0	40.0

Pannello + Cordolo C.A. (2)

N.	Parete	Area	J	Af intrad.	Af estrad.	N. barre	N. barre	Copriferro	Passo	Area	Porzione
		[cm2]	[cm4]	[cm2]	[cm2]	intrad.	Estrad.	[cm]	staffe	staffe	deformabile
									[cm]	[cm2]	
86	6	1,120.00	149,333.33	2.26	2.26	2	2	2.0	30	0.57	0.50
79	7	1,120.00	149,333.33	2.26	2.26	2	2	2.0	30	0.57	0.50

83	9	1,120.00	149,333.33	2.26	2.26	2	2	2.0	30	0.57	0.50
82	11	1,120.00	149,333.33	2.26	2.26	2	2	2.0	30	0.57	0.50

Solaio

N.		1		Ex [N/mm2]	2	Scarico masse	Тіро
11	480	4.0	10.00	3,000.00	0.00	Monodirezionale	Fittizzio

Elementi di copertura

Livello 2 Trave C.A. (1)

N.	C.A. (1	Materiale calcestruzzo	Materiale acciaio	Base sezione	Altezza sezione	J [cm4]
123	6	C20/25	B450	[cm]	[cm] 42.0	370,440.00
125	6	C20/25	B450	60.0	42.0	370,440.00
123	6			60.0	42.0	370,440.00
127	6	C20/25	B450 B450	60.0	42.0	370,440.00
	6	C20/25			+	
130		C20/25	B450	60.0	42.0	370,440.00
132	7	C20/25	B450	60.0	42.0	370,440.00
134	7	C20/25	B450	60.0	42.0	370,440.00
136	7	C20/25	B450	60.0	42.0	370,440.00
138	7	C20/25	B450	60.0	42.0	370,440.00
140	7	C20/25	B450	60.0	42.0	370,440.00
142	7	C20/25	B450	60.0	42.0	370,440.00
144	7	C20/25	B450	60.0	42.0	370,440.00
146	7	C20/25	B450	60.0	42.0	370,440.00
148	7	C20/25	B450	60.0	42.0	370,440.00
150	7	C20/25	B450	60.0	42.0	370,440.00
152	7	C20/25	B450	60.0	42.0	370,440.00
154	7	C20/25	B450	60.0	42.0	370,440.00
156	7	C20/25	B450	60.0	42.0	370,440.00
157	7	C20/25	B450	60.0	42.0	370,440.00
158	7	C20/25	B450	60.0	42.0	370,440.00
160	9	C20/25	B450	60.0	42.0	370,440.00
162	9	C20/25	B450	60.0	42.0	370,440.00
164	9	C20/25	B450	60.0	42.0	370,440.00
165	9	C20/25	B450	60.0	42.0	370,440.00
166	9	C20/25	B450	60.0	42.0	370,440.00
95	11	C20/25	B450	60.0	42.0	370,440.00
97	11	C20/25	B450	60.0	42.0	370,440.00
99	11	C20/25	B450	60.0	42.0	370,440.00
101	11	C20/25	B450	60.0	42.0	370,440.00
103	11	C20/25	B450	60.0	42.0	370,440.00
105	11	C20/25	B450	60.0	42.0	370,440.00
107	11	C20/25	B450	60.0	42.0	370,440.00
109	11	C20/25	B450	60.0	42.0	370,440.00
111	11	C20/25	B450	60.0	42.0	370,440.00
113	11	C20/25	B450	60.0	42.0	370,440.00
115	11	C20/25	B450	60.0	42.0	370,440.00
117	11	C20/25	B450	60.0	42.0	370,440.00
119	11	C20/25	B450	60.0	42.0	370,440.00
121	11	C20/25	B450	60.0	42.0	370,440.00

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

122	11	C20/25	B4	150	60.0	42.0	370,4	40.00
Trave	C.A. (2)						
N.	Parete		Af	N. barre	N. barre	1	Passo	Area staffe
		intradosso	estradosso	intradosso	estradosso	[cm]	staffe	[cm2]
	_	[cm2]	[cm2]	_	_		[cm]	
123	6	3.39	3.39	3	3	2.0	25	0.57
125	6	3.39	3.39	3	3	2.0	25	0.57
127	6	3.39	3.39	3	3	2.0	25	0.57
129	6	3.39	3.39	3	3	2.0	25	0.57
130	6	3.39	3.39	3	3	2.0	25	0.57
132	7	3.39	3.39	3	3	2.0	25	0.57
134	7	3.39	3.39	3	3	2.0	25	0.57
136	7	3.39	3.39	3	3	2.0	25	0.57
138	7	3.39	3.39	3	3	2.0	25	0.57
140	7	3.39	3.39	3	3	2.0	25	0.57
142	7	3.39	3.39	3	3	2.0	25	0.57
144	7	3.39	3.39	3	3	2.0	25	0.57
146	7	3.39	3.39	3	3	2.0	25	0.57
148	7	3.39	3.39	3	3	2.0	25	0.57
150	7	3.39	3.39	3	3	2.0	25	0.57
152	7	3.39	3.39	3	3	2.0	25	0.57
154	7	3.39	3.39	3	3	2.0	25	0.57
156	7	3.39	3.39	3	3	2.0	25	0.57
157	7	3.39	3.39	3	3	2.0	25	0.57
158	7	3.39	3.39	3	3	2.0	25	0.57
160	9	3.39	3.39	3	3	2.0	25	0.57
162	9	3.39	3.39	3	3	2.0	25	0.57
164	9	3.39	3.39	3	3	2.0	25	0.57
165	9	3.39	3.39	3	3	2.0	25	0.57
166	9	3.39	3.39	3	3	2.0	25	0.57
95	11	3.39	3.39	3	3	2.0	25	0.57
97	11	3.39	3.39	3	3	2.0	25	0.57
99	11	3.39	3.39	3	3	2.0	25	0.57
101	11	3.39	3.39	3	3	2.0	25	0.57
103	11	3.39	3.39	3	3	2.0	25	0.57
105	11	3.39	3.39	3	3	2.0	25	0.57
107	11	3.39	3.39	3	3	2.0	25	0.57
109		3.39	3.39	3	3	2.0	25	0.57
111	11	3.39	3.39	3	3	2.0	25	0.57
113	11	3.39	3.39	3	3	2.0	25	0.57
115		3.39	3.39	3	3	2.0	25	0.57
117	11	3.39	3.39	3	3	2.0	25	0.57
119	11	3.39	3.39	3	3	2.0	25	0.57
121		3.39	3.39	3	3	2.0	25	0.57
121		3.39	3.39	3	3	2.0	25	0.57
122	1 1	الاد.	الاد.ن	J	J	∠.∪	۷.3	0.57

N.	Materiale calcestruzzo		Base sezione [cm]	Altezza sezione [cm]		Angolo [°]
167	C20/25	B450	29.0	29.0	841.00	0
168	C20/25	B450	29.0	70.0	2,030.00	0
169	C20/25	B450	29.0	70.0	2,030.00	0

170	C20/25	B450	29.0	70.0	2,030.00	0
171	C20/25	B450	29.0	70.0	2,030.00	0

Pilastro C.A. (2)

N.	Af lato b [cm2]		barre		-	Passo staffe [cm]	Area staffe [cm2]
167	4.02	4.02	2	2	2.0	20	0.57
168	4.02	4.02	2	2	2.0	20	0.57
169	4.02	4.02	2	2	2.0	20	0.57
170	4.02	4.02	2	2	2.0	20	0.57
171	4.02	4.02	2	2	2.0	20	0.57

Falda

N.	Quota	Quota	Spessore	G	Ex	Ey	Scarico masse	Tipo
	min	max	[cm]	[N/mm2]	[N/mm2]	[N/mm2]		
	[cm]	[cm]						
1	650	650	4.0	12,484.17	84,178.95	29,962.00	Monodirezionale	Laterocemento

Telaio equivalente

Parete: 1

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
1	50,029	-50,879	0	0
3	50,659	-50,879	0	0
2	50,029	-50,879	350	1
4	50,659	-50,879	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
47	315	0	0
48	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	r 1		Altezza [cm]	T 7	Baricentro Z [cm]		Nodo sotto
						[cm]			
1	Muratura	-	30.0	630.0	350.0	315	175	47	48

Parete: 2

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
3	50,659	-50,879	0	0
45	50,659	-48,918	0	0
19	50,659	-48,471	0	0
5	50,659	-47,841	0	0
4	50,659	-50,879	350	1
46	50,659	-48,918	350	1
20	50,659	-48,471	350	1
6	50,659	-47,841	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
49	466	0	0

51	638	0	0
53	748	0	0
55	1,036	0	0
57	1,187	0	0
59	2,723	0	0
50	466	350	1
52	638	350	1
54	748	350	1
56	1,036	350	1
58	1,187	350	1
60	2,723	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
15	Muratura	_	30.0	45.0	300.0	1,036	150	55	56
16	Muratura	_	30.0	46.5	300.0	1,187	150	57	58
11	Muratura	_	30.0	138.3	326.9	69	163	3	4
17	Muratura	-	30.0	251.2	326.9	1,835	163	45	46
10	Muratura	-	30.0	630.0	350.0	2,723	175	59	60
12	Muratura	-	30.0	155.0	190.0	466	205	49	50
14	Muratura	-	30.0	30.0	190.0	748	205	53	54
13	Muratura	-	30.0	30.0	80.0	638	260	51	52

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sinistro	destro
						[cm]			
3	Muratura	=	30.0	80.0	220.0	583	110	49	51
5	Muratura	-	30.0	80.0	220.0	693	110	51	53
2	Muratura	=	30.0	250.0	50.0	263	325	4	50
4	Muratura	-	30.0	80.0	50.0	583	325	50	52
6	Muratura	=	30.0	80.0	50.0	693	325	52	54
7	Muratura	-	30.0	250.0	50.0	888	325	54	56
8	Muratura	-	30.0	105.0	50.0	1,111	325	56	58
9	Muratura	-	30.0	500.0	50.0	1,460	325	58	46

Parete: 3

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
7	45,949	-47,841	0	0
28	46,579	-47,841	0	0
23	47,029	-47,841	0	0
5	50,659	-47,841	0	0
8	45,949	-47,841	350	1
29	46,579	-47,841	350	1
24	47,029	-47,841	350	1
6	50,659	-47,841	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
61	1,200	0	0

41

63	1,310	0	0
65	1,420	0	0
67	1,530	0	0
69	1,695	0	0
71	2,385	0	0
73	3,125	0	0
75	3,865	0	0
62	1,200	350	1
64	1,310	350	1
66	1,420	350	1
68	1,530	350	1
70	1,695	350	1
72	2,385	350	1
74	3,125	350	1
76	3,865	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
42	Muratura	-	30.0	240.0	300.0	2,385	150	71	72
43	Muratura	-	30.0	240.0	300.0	3,125	150	73	74
44	Muratura	-	30.0	240.0	300.0	3,865	150	75	76
45	Muratura	-	30.0	225.0	326.9	4,598	163	5	6
34	Muratura	-	30.0	525.0	215.0	263	191	7	8
35	Muratura	-	30.0	25.0	215.0	618	191	28	29
36	Muratura	-	30.0	25.0	215.0	1,093	191	23	24
41	Muratura	-	30.0	140.0	190.0	1,695	205	69	70
37	Muratura	-	30.0	30.0	80.0	1,200	260	61	62
38	Muratura	-	30.0	30.0	80.0	1,310	260	63	64
39	Muratura	-	30.0	30.0	80.0	1,420	260	65	66
40	Muratura	-	30.0	30.0	80.0	1,530	260	67	68

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X [cm]	Baricentro Z [cm]	Nodo sinistro	Nodo destro
18	Muratura	-	30.0	80.0	220.0	565	110	7	28
20	Muratura	-	30.0	80.0	220.0	1,145	110	23	61
22	Muratura	-	30.0	80.0	220.0	1,255	110	61	63
24	Muratura	-	30.0	80.0	220.0	1,365	110	63	65
26	Muratura	-	30.0	80.0	220.0	1,475	110	65	67
28	Muratura	-	30.0	80.0	220.0	1,585	110	67	69
19	Muratura	-	30.0	80.0	50.0	565	325	8	29
21	Muratura	-	30.0	80.0	50.0	1,145	325	24	62
23	Muratura	-	30.0	80.0	50.0	1,255	325	62	64
25	Muratura	-	30.0	80.0	50.0	1,365	325	64	66
27	Muratura	-	30.0	80.0	50.0	1,475	325	66	68
29	Muratura	-	30.0	80.0	50.0	1,585	325	68	70
30	Muratura	-	30.0	500.0	50.0	2,015	325	70	72
31	Muratura	-	30.0	500.0	50.0	2,755	325	72	74
32	Muratura	-	30.0	500.0	50.0	3,495	325	74	76
33	Muratura	-	30.0	500.0	50.0	4,235	325	76	6

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
9	45,949	-50,331	0	0
34	45,949	-49,701	0	0
30	45,949	-49,250	0	0
7	45,949	-47,841	0	0
10	45,949	-50,331	350	1
35	45,949	-49,701	350	1
31	45,949	-49,250	350	1
8	45,949	-47,841	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
77	315	0	0
79	1,820	0	0
81	2,053	0	0
78	315	350	1
80	1,820	350	1
82	2,053	350	1

Macroelementi Maschi

Macroelementi Masem										
N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo	
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto	
						[cm]				
51	Muratura	_	30.0	154.6	326.9	1,158	163	30	31	
54	Muratura	-	30.0	120.0	326.9	2,430	163	7	8	
50	Muratura	-	30.0	630.0	350.0	315	175	77	78	
52	Muratura	-	30.0	170.0	190.0	1,820	205	79	80	
53	Muratura	-	30.0	135.0	190.0	2,053	205	81	82	

Macroelementi Fasce

N.	Materiale	Rinforzo	1			Baricentro	Baricentro Z		Nodo
			[cm]	[cm]	[cm]	X	[cm]	sinistro	destro
						[cm]			
47	Muratura	-	30.0	80.0	220.0	1,945	110	79	81
46	Muratura	-	30.0	500.0	50.0	1,485	325	31	80
48	Muratura	-	30.0	80.0	50.0	1,945	325	80	82
49	Muratura	-	30.0	250.0	50.0	2,245	325	82	8

Parete: 5

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
9	45,949	-50,331	0	0
39	49,579	-50,331	0	0
11	50,029	-50,331	0	0
10	45,949	-50,331	350	1
40	49,579	-50,331	350	1
12	50,029	-50,331	350	1

Nodi 2D

11041				
Nodo	X locale [cm]	Z [cm]	Livello	

845	0	0
1,585	0	0
2,325	0	0
3,015	0	0
3,180	0	0
3,290	0	0
3,400	0	0
3,510	0	0
845	350	1
1,585	350	1
2,325	350	1
3,015	350	1
3,180	350	1
3,290	350	1
3,400	350	1
3,510	350	1
	1,585 2,325 3,015 3,180 3,290 3,400 3,510 845 1,585 2,325 3,015 3,180 3,290 3,400	1,585 0 2,325 0 3,015 0 3,180 0 3,290 0 3,400 0 3,510 0 845 350 1,585 350 2,325 350 3,015 350 3,180 350 3,290 350 3,400 350

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
70	Muratura	-	30.0	240.0	300.0	845	150	83	84
71	Muratura	-	30.0	240.0	300.0	1,585	150	85	86
72	Muratura	-	30.0	240.0	300.0	2,325	150	87	88
69	Muratura	-	30.0	225.0	326.9	113	163	9	10
78	Muratura	-	30.0	25.0	215.0	3,618	191	39	40
73	Muratura	-	30.0	140.0	190.0	3,015	205	89	90
74	Muratura	-	30.0	30.0	80.0	3,180	260	91	92
75	Muratura	-	30.0	30.0	80.0	3,290	260	93	94
76	Muratura	-	30.0	30.0	80.0	3,400	260	95	96
77	Muratura	-	30.0	30.0	80.0	3,510	260	97	98

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X [cm]	Baricentro Z [cm]	Nodo sinistro	Nodo destro
59	Muratura	-	30.0	80.0	220.0	3,125	110	89	91
61	Muratura	-	30.0	80.0	220.0	3,235	110	91	93
63	Muratura	-	30.0	80.0	220.0	3,345	110	93	95
65	Muratura	-	30.0	80.0	220.0	3,455	110	95	97
67	Muratura	-	30.0	80.0	220.0	3,565	110	97	39
55	Muratura	-	30.0	500.0	50.0	475	325	10	84
56	Muratura	-	30.0	500.0	50.0	1,215	325	84	86
57	Muratura	-	30.0	500.0	50.0	1,955	325	86	88
58	Muratura	-	30.0	500.0	50.0	2,695	325	88	90
60	Muratura	-	30.0	80.0	50.0	3,125	325	90	92
62	Muratura	-	30.0	80.0	50.0	3,235	325	92	94
64	Muratura	-	30.0	80.0	50.0	3,345	325	94	96
66	Muratura	-	30.0	80.0	50.0	3,455	325	96	98
68	Muratura	-	30.0	80.0	50.0	3,565	325	98	40

Parete: 6

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
1	50,029	-50,879	0	0
11	50,029	-50,331	0	0
36	50,029	-49,701	0	0
43	50,029	-48,918	0	0
13	50,029	-48,471	0	0
2	50,029	-50,879	350	1
12	50,029	-50,331	350	1
37	50,029	-49,701	350	1
44	50,029	-48,918	350	1
14	50,029	-48,471	350	1
38	50,029	-49,701	480	2
15	50,029	-48,471	480	2

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
99	1,793	480	2

Macroelementi Maschi

TTIGOTO	Water ocienienti i wasem								
N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
81	Muratura	_	30.0	685.0	235.0	1,471	118	36	37
80	Muratura	-	30.0	1,018.3	303.8	509	152	11	12
82	Muratura	_	30.0	37.7	303.8	1,942	152	43	44
83	Muratura	-	28.0	782.7	132.5	1,570	416	37	99
84	Muratura	-	28.0	447.3	130.0	2,185	418	44	15

Macroelementi Fasce

N.	Materiale	Rinforzo	r 1		Altezza [cm]		Baricentro Z [cm]		Nodo destro
						[cm]			
79	Muratura	-	30.0	110.0	115.0	1,073	293	12	37

Parete: 7

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
16	46,579	-48,471	0	0
21	47,029	-48,471	0	0
13	50,029	-48,471	0	0
19	50,659	-48,471	0	0
17	46,579	-48,471	350	1
22	47,029	-48,471	350	1
14	50,029	-48,471	350	1
20	50,659	-48,471	350	1
18	46,579	-48,471	480	2
15	50,029	-48,471	480	2

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
100	802	0	0
102	1,285	0	0
104	2,057	0	0

106	2,822	0	0	
108	3,292	0	0	
101	802	350	1	
103	1,285	350	1	
105	2,057	350	1	
107	2,822	350	1	
109	3,292	350	1	
110	1,725	480	2	

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X	Baricentro Z [cm]	Nodo sopra	Nodo sotto
						[cm]			
86	Muratura	-	30.0	75.0	235.0	803	118	100	101
87	Muratura	-	30.0	670.0	235.0	1,285	118	102	103
88	Muratura	-	30.0	655.0	235.0	2,058	118	104	105
89	Muratura	-	30.0	655.0	235.0	2,823	118	106	107
90	Muratura	-	30.0	65.0	235.0	3,293	118	108	109
85	Muratura	-	30.0	205.0	303.8	553	152	21	22
91	Muratura	-	30.0	645.0	303.8	3,758	152	13	14
92	Muratura	-	28.0	450.0	132.5	225	416	22	18
93	Muratura	-	28.0	1,275.0	130.0	1,088	418	103	110
94	Muratura	-	28.0	1,097.5	130.0	2,274	418	105	110
95	Muratura	-	28.0	627.5	130.0	3,136	418	107	15

Parete: 8

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
21	47,029	-48,471	0	0
23	47,029	-47,841	0	0
22	47,029	-48,471	350	1
24	47,029	-47,841	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	1		Altezza [cm]	T 7	Baricentro Z [cm]		Nodo sotto
98	Muratura	-	30.0	205.0	225.0	103	172	21	22
99	Muratura	-	30.0	345.0	225.0	458	172	23	24

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	X	Baricentro Z [cm]		Nodo destro
						[cm]			
96	Muratura	-	30.0	80.0	110.0	245	55	21	23
97	Muratura	-	30.0	80.0	140.0	245	280	22	24

Parete: 9

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
25	46,579	-49,701	0	0
32	46,579	-49,250	0	0
16	46,579	-48,471	0	0

28	46,579	-47,841	0	0
26	46,579	-49,701	350	1
33	46,579	-49,250	350	1
17	46,579	-48,471	350	1
29	46,579	-47,841	350	1
27	46,579	-49,701	480	2
18	46,579	-48,471	480	2

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
111	615	480	2

Macroelementi Maschi

1.1001	Jerementi iviasem	1				1	1		
N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
102	Muratura	-	30.0	655.0	235.0	923	118	16	17
101	Muratura	-	30.0	34.6	303.8	468	152	32	33
103	Muratura	-	30.0	500.0	303.8	1,610	152	28	29
105	Muratura	-	28.0	779.6	132.5	840	416	17	111
104	Muratura	-	28.0	450.4	130.0	225	418	33	27

Macroelementi Fasce

N.	Materiale	Rinforzo	1		Altezza [cm]		Baricentro Z [cm]		Nodo destro
						[cm]			
100	Muratura	-	30.0	110.0	115.0	1,305	293	17	29

Parete: 10

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
30	45,949	-49,250	0	0
32	46,579	-49,250	0	0
31	45,949	-49,250	350	1
33	46,579	-49,250	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
112	315	0	0
113	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	1		Altezza [cm]	T 7	Baricentro Z		Nodo sotto
			L J	LJ	. ,	[cm]	L J	1	
106	Muratura	-	30.0	630.0	350.0	315	175	112	113

Parete: 11

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
34	45,949	-49,701	0	0
25	46,579	-49,701	0	0
41	49,579	-49,701	0	0
36	50,029	-49,701	0	0

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

35	45,949	-49,701	350	1
26	46,579	-49,701	350	1
42	49,579	-49,701	350	1
37	50,029	-49,701	350	1
27	46,579	-49,701	480	2
38	50,029	-49,701	480	2

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
114	793	0	0
116	1,263	0	0
118	2,028	0	0
120	2,793	0	0
122	3,308	0	0
115	793	350	1
117	1,263	350	1
119	2,028	350	1
121	2,793	350	1
123	3,308	350	1
124	2,355	480	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X	Baricentro Z [cm]	Nodo sopra	Nodo sotto
						[cm]			
108	Muratura	-	30.0	65.0	235.0	793	118	114	115
109	Muratura	-	30.0	655.0	235.0	1,263	118	116	117
110	Muratura	-	30.0	655.0	235.0	2,028	118	118	119
111	Muratura	-	30.0	655.0	235.0	2,793	118	120	121
112	Muratura	-	30.0	155.0	235.0	3,308	118	122	123
107	Muratura	-	30.0	650.0	303.8	325	152	25	26
113	Muratura	-	30.0	135.0	303.8	3,563	152	41	42
116	Muratura	-	28.0	1,275.0	117.5	2,992	411	120	124
117	Muratura	-	28.0	450.5	130.3	3,855	417	42	38
115	Muratura	-	28.0	1,092.5	130.0	1,809	418	119	124
114	Muratura	-	28.0	632.5	140.0	946	420	115	27

Parete: 12

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
39	49,579	-50,331	0	0
41	49,579	-49,701	0	0
40	49,579	-50,331	350	1
42	49,579	-49,701	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
127	168	0	0
125	335	0	0
128	168	350	1
126	335	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	. 1		Altezza [cm]	T 7	Baricentro Z [cm]		Nodo sotto
						[cm]		•	
118	Muratura	=	30.0	335.0	350.0	168	175	127	128

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
43	50,029	-48,918	0	0
45	50,659	-48,918	0	0
44	50,029	-48,918	350	1
46	50,659	-48,918	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
129	315	0	0
130	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	1		Altezza [cm]	T 7	Baricentro Z		Nodo sotto
			. ,	. ,		[cm]	. ,	1	
119	Muratura	-	30.0	630.0	350.0	315	175	129	130

(*) Elementi di copertura

Analisi statica

Tipo di analisi svolta

Al fine di eseguire le dovute verifiche nei riguardi dell'edificio in questione, si è deciso di procedere con l'esecuzione di una analisi statica.

Le verifiche richieste si concretizzano nel confronto fra il valore del carico verticale agente ed il carico verticale resistente. Questa valutazione viene effettuata prendendo in esame i valori di snellezza ed eccentricità [Norme Tecniche 2018 §4.5.6].

Metodo di analisi

La modellazione dell'edificio viene realizzata mediante l'inserimento di pareti che vengono discretizzate in macroelementi, rappresentativi di maschi murari e fasce di piano deformabili; i nodi rigidi sono indicati nelle porzioni di muratura che tipicamente sono meno soggette al danneggiamento sismico. Solitamente i maschi e le fasce sono contigui alle aperture, i nodi rigidi rappresentano elementi di collegamento tra maschi e fasce. La concezione matematica che si nasconde nell'impiego di tale elemento, permette di riconoscere il meccanismo di danno, a taglio nella sua parte centrale o a pressoflessione sui bordi dell'elemento in modo da percepire la dinamica del danneggiamento così come si presenta effettivamente nella realtà.

I nodi del modello, sono nodi tridimensionali a 5 gradi di libertà (le tre componenti di spostamento nel sistema di riferimento globale e le rotazioni intorno agli assi X e Y) o nodi bidimensionali a 3 gradi di libertà (due traslazioni e la rotazione nel piano della parete). Quelli tridimensionali vengono usati per permettere il trasferimento delle azioni, da un primo muro a un secondo disposto trasversalmente rispetto al primo. I nodi di tipo bidimensionale hanno gradi di libertà nel solo piano della parete permettendo il trasferimento degli stati di sollecitazione tra i vari punti della parete. Gli orizzontamenti, sono modellati con elementi solaio a tre nodi connessi ai nodi tridimensionali, sono caricabili perpendicolarmente al loro piano dai carichi accidentali e permanenti;

Combinazione delle azioni

Carico Statico:

La verifica allo stato limite ultimo per carichi statici viene condotta con la seguente combinazione dei carichi. $\gamma_{G1}G_{k1} + \gamma_{G2}G_{k2} + \gamma_{Q}\Psi_{0}Q_{k}$

dove:

E azione sismica per lo stato limite in esame;

 G_{k1} peso proprio di tutti gli elementi strutturali;

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

 G_{k2} peso proprio di tutti gli elementi non strutturali; Q_{Ki} valore caratteristico della azione variabile;

 Ψ_2 coefficiente di combinazione;

 Ψ_0 coefficiente di combinazione per i carichi variabili

 γ_{G1} ; γ_{G2} ; γ_{Q} : coefficienti parziali di sicurezza

I valori dei vari coefficienti sono scelti in base alla destinazione d'uso dei vari solai secondo quanto indicato nella norma. [Norme Tecniche 2018 Tabella 2.5.1].

Verifiche

Le verifiche statiche eseguite sulla struttura in questione sono le seguenti:

Snellezza della muratura

La verifica di snellezza è eseguita in accordo con quanto riportato al punto 4.5.4. delle NTC 2018.

Si definisce snellezza di una muratura il rapporto h_0/t in cui:

 h_0 : lunghezza libera di inflessione del muro pari a $\rho \cdot h$;

t: spessore del muro.

h: l'altezza interna di piano;

ρ: il fattore laterale di vincolo.

La verifica di snellezza risulta soddisfatta se risulta verificata la seguente:

 $h_0/t < 20$

Eccentricità dei carichi

La verifica di snellezza è eseguita in accordo con quanto riportato al punto 4.5.6.2. delle NTC 2018.

Tale verifica risulta soddisfatta qualora risultino verificate le seguenti condizioni:

 $e_1/t \le 0.33$

 $e_2/t \le 0.33$

in cui:

t: spessore del muro

$$e_1 = |e_s| + |e_a|$$
 ; $e_2 = \frac{e_1}{2} + |e_v|$

 e_s : eccentricità totale dei carichi verticali

 e_a : h/200

 e_v : eccentricità dovuta al vento $e_v = M_v / N$

Verifica a carichi verticali

La verifica di snellezza è eseguita in accordo con quanto riportato al punto 4.5.6.2. delle NTC 2018.

Tale verifica risulta soddisfatta qualora risulti verificata la seguente:

 $N_d \le N_r$

in cui:

 N_d : carico verticale agente

 N_r : carico verticale resistente; $Nr = \phi f_d A$

A: area della sezione orizzontale del muro al netto delle aperture;

f_d: resistenza di calcolo della muratura;

φ: coefficiente di riduzione della resistenza del muro

Queste verifiche sono state eseguite in ogni maschio murario della struttura, nelle tre sezioni principali (inferiore, centrale, superiore).

I valori dello sforzo normale resistente saranno calcolabili solamente se le verifiche di snellezza ed eccentricità dei carichi risultano soddisfatte. Riportiamo nel seguito i dettagli di verifica per le singole pareti.

Parete: 1

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
1	344	30	11.467	0.057	0.057	0.057	Sì

Superiore				Centrale			Inferiore						
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
1	14,777	0.646	180,248	0.082	22,517	0.646	180,248	0.125	30,256	0.646	180,248	0.168	Sì

i di ctc . 2	=	_		<u>.</u>			
Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
10	344	30	11.467	0.057	0.057	0.057	Sì

11	344	30	11.467	0.160	0.096	0.254	Sì
12	344	30	11.467	0.172	0.096	0.223	Sì
13	344	30	11.467	0.192	0.098	0.199	Sì
14	344	30	11.467	0.183	0.097	0.209	Sì
15	344	30	11.467	0.178	0.096	0.209	Sì
16	344	30	11.467	0.180	0.096	0.205	Sì
17	344	30	11.467	0.156	0.092	0.238	Sì

S	Superiore			Ce	ntrale			Inferiore					
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
10	8,252	0.646	180,248	0.046	15,992	0.646	180,248	0.089	23,731	0.646	180,248	0.132	Sì
11	3,443	0.000	n / d	n / d	5,029	0.547	33,513	0.150	6,616	0.425	26,024	0.254	No
12	4,614	0.296	20,292	0.227	5,647	0.547	37,520	0.151	6,681	0.401	27,529	0.243	Sì
13	2,983	0.345	4,582	0.651	3,068	0.544	7,230	0.424	3,152	0.361	4,789	0.658	Sì
14	1,888	0.324	4,307	0.438	2,088	0.545	7,238	0.289	2,289	0.379	5,032	0.455	Sì
15	3,684	0.324	6,453	0.571	4,157	0.547	10,906	0.381	4,631	0.388	7,727	0.599	Sì
16	4,746	0.333	6,862	0.692	5,235	0.548	11,290	0.464	5,725	0.385	7,930	0.722	Sì
17	6,951	0.266	29,616	0.235	9,833	0.555	61,680	0.159	12,715	0.433	48,122	0.264	Sì

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
34	344	30	11.467	0.057	0.057	0.057	Sì
35	344	30	11.467	0.057	0.057	0.057	Sì
36	344	30	11.467	0.073	0.057	0.078	Sì
37	344	30	11.467	0.118	0.060	0.121	Sì
38	344	30	11.467	0.124	0.063	0.127	Sì
39	344	30	11.467	0.129	0.065	0.131	Sì
40	344	30	11.467	0.130	0.066	0.133	Sì
41	344	30	11.467	0.115	0.060	0.125	Sì
42	344	30	11.467	0.116	0.061	0.129	Sì
43	344	30	11.467	0.116	0.061	0.129	Sì
44	344	30	11.467	0.116	0.061	0.129	Sì
45	344	30	11.467	0.111	0.060	0.132	Sì

S	uperiore	_	Centrale				Inferiore				_		
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
34	13,490	0.646	150,207	0.090	17,452	0.646	150,207	0.116	21,414	0.646	150,207	0.143	Sì
35	1,677	0.646	7,153	0.234	1,866	0.646	7,153	0.261	2,054	0.646	7,153	0.287	Sì
36	1,321	0.589	6,514	0.203	1,510	0.646	7,153	0.211	1,698	0.601	6,656	0.255	Sì
37	3,263	0.500	6,642	0.491	3,348	0.640	8,498	0.394	3,432	0.506	6,721	0.511	Sì
38	3,197	0.488	6,481	0.493	3,281	0.631	8,382	0.391	3,366	0.495	6,570	0.512	Sì
39	4,121	0.480	6,370	0.647	4,205	0.624	8,293	0.507	4,289	0.485	6,444	0.666	Sì
40	5,640	0.477	6,342	0.889	5,724	0.622	8,265	0.693	5,808	0.482	6,397	0.908	Sì
41	11,092	0.492	30,488	0.364	12,026	0.639	39,605	0.304	12,960	0.511	31,648	0.409	Sì
42	22,783	0.485	51,532	0.442	25,310	0.636	67,631	0.374	27,837	0.510	54,172	0.514	Sì
43	23,258	0.484	51,472	0.452	25,785	0.636	67,571	0.382	28,312	0.509	54,078	0.524	Sì
44	23,854	0.484	51,482	0.463	26,381	0.636	67,553	0.391	28,908	0.508	54,033	0.535	Sì
45	13,418	0.479	47,697	0.281	15,999	0.639	63,645	0.251	18,581	0.519	51,656	0.360	Sì

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
50	344	30	11.467	0.057	0.057	0.057	Sì
51	344	30	11.467	0.157	0.092	0.233	Sì
52	344	30	11.467	0.172	0.094	0.211	Sì
53	344	30	11.467	0.178	0.099	0.224	Sì
54	344	30	11.467	0.162	0.103	0.311	Sì

S	uperiore		Centrale				Inferiore						
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
50	11,319	0.646	180,248	0.063	19,059	0.646	180,248	0.106	26,798	0.646	180,248	0.149	Sì
51	4,626	0.276	18,882	0.245	6,400	0.555	37,987	0.168	8,174	0.431	29,503	0.277	Sì
52	6,858	0.322	24,221	0.283	7,992	0.551	41,445	0.193	9,126	0.400	30,106	0.303	Sì
53	4,738	0.295	17,619	0.269	5,638	0.543	32,435	0.174	6,538	0.389	23,244	0.281	Sì
54	1,933	0.000	n / d	n / d	3,310	0.535	28,401	0.117	4,687	0.421	22,360	0.210	No

D	arete	5
1	arcic	-

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
69	344	30	11.467	0.111	0.060	0.132	Sì
70	344	30	11.467	0.116	0.061	0.129	Sì
71	344	30	11.467	0.116	0.061	0.129	Sì
72	344	30	11.467	0.116	0.061	0.129	Sì
73	344	30	11.467	0.115	0.060	0.125	Sì
74	344	30	11.467	0.131	0.066	0.134	Sì
75	344	30	11.467	0.129	0.065	0.132	Sì
76	344	30	11.467	0.123	0.062	0.126	Sì
77	344	30	11.467	0.119	0.060	0.121	Sì
78	344	30	11.467	0.074	0.057	0.077	Sì

S	uperiore			Ce	ntrale		Inferiore						
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
69	13,405	0.479	47,695	0.281	15,986	0.639	63,645	0.251	18,568	0.519	51,657	0.359	Sì
70	23,867	0.485	51,490	0.464	26,394	0.636	67,558	0.391	28,921	0.509	54,038	0.535	Sì
71	23,257	0.484	51,472	0.452	25,784	0.636	67,571	0.382	28,311	0.509	54,078	0.524	Sì
72	22,786	0.485	51,532	0.442	25,313	0.636	67,630	0.374	27,840	0.510	54,171	0.514	Sì
73	11,031	0.492	30,478	0.362	11,965	0.639	39,600	0.302	12,898	0.511	31,645	0.408	Sì
74	5,457	0.475	6,315	0.864	5,541	0.621	8,247	0.672	5,626	0.480	6,374	0.883	Sì
75	3,946	0.478	6,349	0.622	4,031	0.623	8,279	0.487	4,115	0.484	6,427	0.640	Sì
76	3,352	0.490	6,508	0.515	3,436	0.632	8,400	0.409	3,521	0.496	6,592	0.534	Sì
77	4,342	0.499	6,633	0.655	4,426	0.639	8,484	0.522	4,511	0.504	6,693	0.674	Sì
78	2,166	0.590	6,525	0.332	2,355	0.646	7,153	0.329	2,543	0.598	6,618	0.384	Sì

Parete: 6

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
80	344	30	11.467	0.087	0.057	0.106	Sì
81	344	30	11.467	0.073	0.057	0.074	Sì
82	344	30	11.467	0.073	0.057	0.076	Sì
83	130	28	4.643	0.023	0.023	0.023	Sì
84	130	28	4.643	0.023	0.023	0.023	Sì

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

S	uperiore		Centrale					Inferiore					ā.
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
80	32,815	0.528	237,987	0.138	43,674	0.646	291,330	0.150	54,532	0.565	254,846	0.214	Sì
81	97,568	0.598	181,294	0.538	103,218	0.646	195,984	0.527	108,868	0.603	182,818	0.595	Sì
82	5,196	0.594	9,919	0.524	5,598	0.646	10,792	0.519	6,000	0.601	10,036	0.598	Sì
83	88,168	0.900	291,002	0.303	91,566	0.900	291,002	0.315	94,963	0.900	291,002	0.326	Sì
84	14,432	0.900	166,303	0.087	15,007	0.900	166,303	0.090	16,912	0.900	166,303	0.102	Sì

Parete:	7	_	_		_		_
Maschi o	ho [cm]	t [cm]	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
85	344	30	11.467	0.074	0.057	0.078	Sì
86	344	30	11.467	0.079	0.057	0.082	Sì
87	344	30	11.467	0.086	0.057	0.092	Sì
88	344	30	11.467	0.090	0.057	0.099	Sì
89	344	30	11.467	0.086	0.057	0.091	Sì
90	344	30	11.467	0.089	0.057	0.095	Sì
91	344	30	11.467	0.069	0.057	0.074	Sì
92	130	28	4.643	0.024	0.023	0.024	Sì
93	130	28	4.643	0.027	0.023	0.029	Sì
94	130	28	4.643	0.027	0.023	0.029	Sì
95	130	28	4.643	0.028	0.023	0.028	Sì

S	uperiore			Ce	ntrale		Inferiore				5		
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
85	19,748	0.588	53,404	0.370	21,934	0.646	58,652	0.374	24,120	0.599	54,356	0.444	Sì
86	7,855	0.576	19,121	0.411	8,474	0.646	21,458	0.395	9,092	0.585	19,439	0.468	Sì
87	48,646	0.554	164,437	0.296	54,172	0.646	191,692	0.283	59,699	0.567	168,142	0.355	Sì
88	40,668	0.542	157,144	0.259	46,070	0.646	187,401	0.246	51,473	0.559	162,009	0.318	Sì
89	57,401	0.557	161,636	0.355	62,804	0.646	187,401	0.335	68,206	0.568	164,596	0.414	Sì
90	5,796	0.549	15,798	0.367	6,332	0.646	18,597	0.340	6,868	0.560	16,125	0.426	Sì
91	30,598	0.599	170,990	0.179	37,476	0.646	184,539	0.203	44,353	0.613	175,192	0.253	Sì
92	33,301	0.897	166,873	0.200	35,254	0.900	167,306	0.211	37,208	0.898	166,919	0.223	Sì
93	25,154	0.881	464,179	0.054	30,584	0.900	474,035	0.065	36,014	0.887	467,151	0.077	Sì
94	16,698	0.882	399,965	0.042	21,372	0.900	408,042	0.052	26,046	0.888	402,863	0.065	Sì
95	70,888	0.885	229,538	0.309	73,561	0.900	233,299	0.315	76,233	0.886	229,802	0.332	Sì

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
98	344	30	11.467	0.082	0.057	0.086	Sì
99	344	30	11.467	0.215	0.122	0.288	Sì

S	uperiore	-		Centrale				Inferiore					
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
98	20,745	0.568	51,524	0.403	22,364	0.646	58,652	0.381	23,983	0.577	52,326	0.458	Sì
99	11,747	0.000	n / d	n / d	14,471	0.497	75,897	0.191	17,196	0.312	47,720	0.360	No

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
101	344	30	11.467	0.073	0.057	0.075	Sì
102	344	30	11.467	0.072	0.057	0.074	Sì
103	344	30	11.467	0.078	0.057	0.091	Sì
104	130	28	4.643	0.023	0.023	0.023	Sì
105	130	28	4.643	0.023	0.023	0.023	Sì

S	uperiore			Ce	ntrale		Inferiore				
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr
o											
1.0.1	4.720	0.506	0.105	0.510	5 107	0.646	0.005	0.716	5 476	0.602	0.0

Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
101	4,738	0.596	9,125	0.519	5,107	0.646	9,895	0.516	5,476	0.603	9,228	0.593	Sì
102	87,446	0.600	173,906	0.503	92,849	0.646	187,401	0.495	98,251	0.605	175,390	0.560	Sì
103	16,931	0.557	123,281	0.137	22,262	0.646	143,054	0.156	27,594	0.587	129,927	0.212	Sì
104	15,043	0.900	167,455	0.090	15,627	0.900	167,455	0.093	17,545	0.900	167,455	0.105	Sì
105	77,086	0.900	289,849	0.266	80,470	0.900	289,849	0.278	83,854	0.900	289,849	0.289	Sì

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
106	344	30	11.467	0.085	0.057	0.098	Sì

S	uperiore			Ce	ntrale			Infe	riore				
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
106	32,322	0.544	151,780	0.213	40,061	0.646	180,248	0.222	47,801	0.569	158,793	0.301	Sì

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]				_	
107	344	30	11.467	0.067	0.057	0.071	Sì
108	344	30	11.467	0.088	0.057	0.094	Sì
109	344	30	11.467	0.088	0.057	0.095	Sì
110	344	30	11.467	0.098	0.057	0.117	Sì
111	344	30	11.467	0.098	0.057	0.114	Sì
112	344	30	11.467	0.084	0.057	0.088	Sì
113	344	30	11.467	0.078	0.057	0.082	Sì
114	130	28	4.643	0.028	0.023	0.028	Sì
115	130	28	4.643	0.026	0.023	0.032	Sì
116	350	28	12.500	0.067	0.063	0.069	Sì
117	130	28	4.643	0.028	0.023	0.028	Sì

S	Superiore Centrale					Infe	riore						
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
107	37,399	0.607	174,683	0.214	44,330	0.646	185,970	0.238	51,261	0.618	177,735	0.288	Sì
108	5,818	0.551	15,863	0.367	6,354	0.646	18,597	0.342	6,890	0.562	16,179	0.426	Sì
109	47,164	0.550	159,523	0.296	52,566	0.646	187,401	0.281	57,969	0.563	163,400	0.355	Sì
110	22,750	0.507	147,015	0.155	28,152	0.646	187,401	0.150	33,555	0.544	157,740	0.213	Sì
111	28,581	0.514	149,009	0.192	33,984	0.646	187,401	0.181	39,387	0.543	157,598	0.250	Sì
112	14,994	0.562	38,572	0.389	16,272	0.646	44,347	0.367	17,551	0.571	39,169	0.448	Sì
113	13,643	0.576	34,406	0.397	15,082	0.646	38,625	0.390	16,522	0.588	35,141	0.470	Sì
114	78,896	0.885	231,313	0.341	81,797	0.900	235,158	0.348	84,698	0.886	231,577	0.366	Sì
115	4,122	0.874	394,435	0.010	8,774	0.900	406,183	0.022	13,427	0.892	402,577	0.033	Sì

1	116	29,210	0.584	307,825	0.095	34,118	0.603	317,441	0.107	39,026	0.589	310,244	0.126	Sì
1	117	26,920	0.884	164,532	0.164	28,843	0.900	167,492	0.172	30,766	0.886	164,902	0.187	Sì

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
118	344	30	11.467	0.201	0.124	0.345	No

	Superiore	e		Centrale			Inferiore						
Masc	hi Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
118	8,172	0.000	n / d	n / d	12,288	0.493	73,143	0.168	16,403	0.342	50,728	0.323	No

Parete: 13

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
119	344	30	11.467	0.081	0.057	0.092	Sì

	Superiore			Ce	ntrale		_	Infe	riore				
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
119	31,345	0.554	154,619	0.203	39,084	0.646	180,248	0.217	46,824	0.579	161,489	0.290	Sì

(*) Elementi di copertura

Analisi globale Stato di Progetto

Analisi pushover

Metodo di analisi

La modellazione dell'edificio viene realizzata mediante l'inserimento di pareti che vengono discretizzate in macroelementi, rappresentativi di maschi murari e fasce di piano deformabili; i nodi rigidi sono indicati nelle porzioni di muratura che tipicamente sono meno soggette al danneggiamento sismico. Solitamente i maschi e le fasce sono contigui alle aperture, i nodi rigidi rappresentano elementi di collegamento tra maschi e fasce. La concezione matematica che si nasconde nell'impiego di tale elemento, permette di riconoscere il meccanismo di danno, a taglio nella sua parte centrale o a pressoflessione sui bordi dell'elemento in modo da percepire la dinamica del danneggiamento così come si presenta effettivamente nella realtà.

I nodi del modello, sono nodi tridimensionali a 5 gradi di libertà (le tre componenti di spostamento nel sistema di riferimento globale e le rotazioni intorno agli assi X e Y) o nodi bidimensionali a 3 gradi di libertà (due traslazioni e la rotazione nel piano della parete). Quelli tridimensionali vengono usati per permettere il trasferimento delle azioni, da un primo muro a un secondo disposto trasversalmente rispetto al primo. I nodi di tipo bidimensionale hanno gradi di libertà nel solo piano della parete permettendo il trasferimento degli stati di sollecitazione tra i vari punti della parete.

Gli orizzontamenti, sono modellati con elementi solaio a tre nodi connessi ai nodi tridimensionali, sono caricabili perpendicolarmente al loro piano dai carichi accidentali e permanenti; le azioni sismiche caricano il solaio lungo la direzione del piano medio. Per questo l'elemento finito solaio viene definito con una rigidezza assiale, ma nessuna rigidezza flessionale, in quanto il comportamento meccanico principale che si intende sondare è quello sotto carico orizzontale dovuto al sisma.

Combinazioni di carico adottate

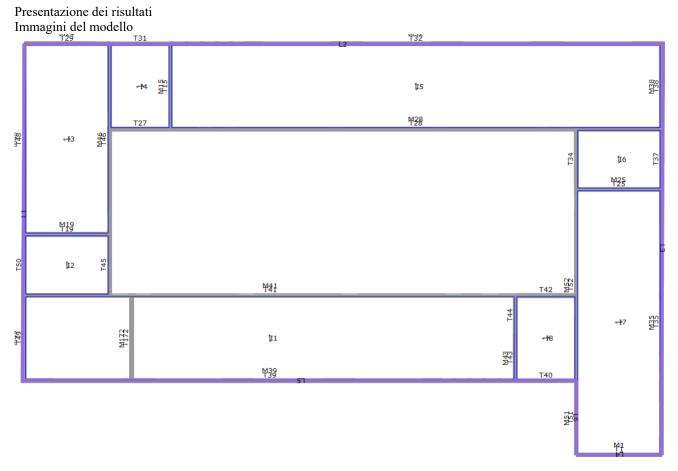
Secondo le prescrizioni da normativa, le condizioni di carico da esaminare devono considerare almeno due distribuzioni di forze d'inerzia, ricadenti l'una nelle distribuzioni principali (Gruppo 1) e l'altra nelle distribuzioni secondarie (Gruppo 2) appresso illustrate.

- distribuzione proporzionale alle Forze statiche (Gruppo 1)
- distribuzione uniforme di forze, da intendersi come derivata da una distribuzione uniforme di accelerazioni lungo l'altezza della costruzione (Gruppo 2);

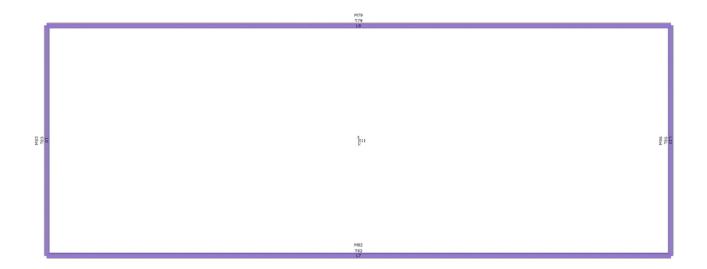
L'analisi, eseguita in controllo di spostamento, procede al calcolo della distribuzione di forze che genera il valore dello spostamento richiesto. L'analisi viene fatta continuare fino a che non si verifica il decadimento del taglio al 80% dal suo valore di picco. Si calcola così il valore dello spostamento massimo alla base dell'edificio generato da quella distribuzione di forze. Questo valore di spostamento costituisce il valore ultimo dell'edificio.

Lo spostamento preso in esame per il tracciamento della curva di capacità è quello di un punto dell'edificio detto nodo di controllo.

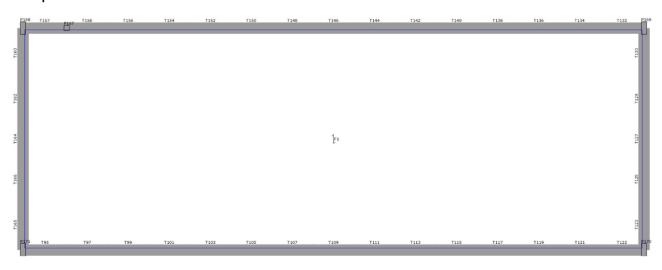
La normativa richiede il tracciamento di una curva di capacità bi-lineare di un sistema equivalente (SDOF). Il tracciamento di tale curva deve avvenire con una retta che, passando per l'origine interseca la curva del sistema reale in corrispondenza del 70% del valore di picco; la seconda retta risulterà parallela all'asse degli spostamenti tale da generare l'equivalenza delle aree tra i diagrammi del sistema reale e quello equivalente.

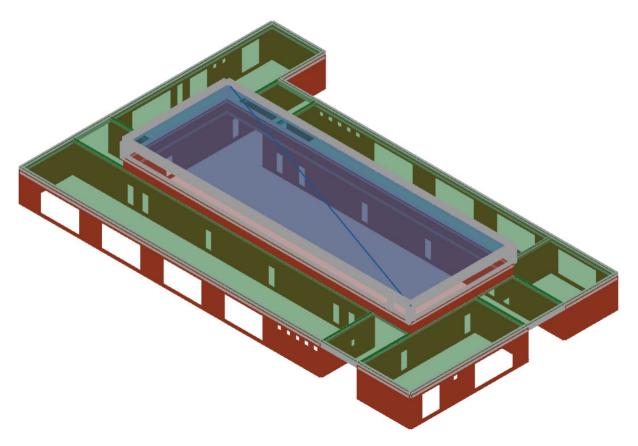

La determinazione della curva relativa al sistema equivalente, permette di determinare il periodo con cui ricavare lo spostamento massimo richiesto dal sisma, secondo gli spettri riportati sulla normativa.

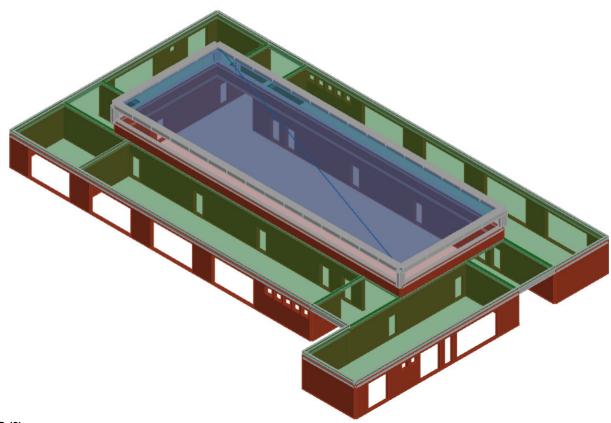
La normativa definisce una eccentricità accidentale del centro delle masse pari al 5% della massima dimensione dell'edificio in direzione perpendicolare al sisma.


In base alla tipologia dell'edificio e alle scelte progettuali che si ritengono più idonee, si può decidere la condizione di carico sismico da prendere in esame.

- Carico sismico: Individua quale delle due tipologie di distribuzioni (proporzionale alle masse o al primo modo) prendere in esame.
- Direzione: Individua la direzione lungo cui viene caricata la struttura (X o Y del sistema globale) dal carico sismico.


Al fine di individuare la condizione di carico sismico più gravosa, si è deciso di eseguire le analisi distinte per tipologia di carico, direzione del sisma e di eventuali eccentricità accidentali.


Vista pianta livello 1


Vista pianta livello 2

Vista pianta livello 2 tetto

Vista 3D (1)

Vista 3D (2)

Parametri di progetto

Per la definizione dell'azione sismica si fa riferimento a:

Categoria di sottosuolo: C
Categoria topografica: T1
Longitudine: 12.0797
Latitudine: 44.3601

• Vita nominale: Opere ordinarie VN >= 50 anni

• Classe d'uso III - Edifici con grandi affollamenti, infrastrutture importanti

Gli spettri di risposta, sono definiti in funzione del reticolo di riferimento definito nella "Tabella 1" (parametri spettrali) in allegato alle Norme Tecniche.

Tale tabella fornisce, in funzione delle coordinate geografiche (latitudine, longitudine), i parametri necessari a tracciare lo spettro. I parametri forniti dal reticolo di riferimento sono:

a_g: accelerazione orizzontale massima del terreno;

F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

La trilogia di valori qui descritta, è definita per un periodo di ritorno assegnato (TR), definito in base alla probabilità di superamento di ciascuno degli stati limite.

Tali valori, saranno pertanto definiti per ciascuno degli stati limite esaminati (vedere tabella).

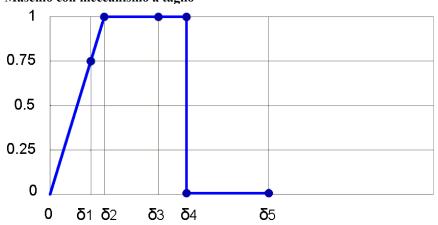
Lo spettro sismico dipende anche dalla "Classe del suolo" e dalla "categoria topografica" (vedere tabella).

	Ag [m/s2]	F0	Tc* [s]	Tr	Ss	Tb [s]	Tc[s]	Td [s]
SLC	2.66	2.42	0.31	1462.00	1.31	0.16	0.48	2.69
SLV	2.07	2.42	0.30	712.00	1.39	0.16	0.47	2.45
SLD	0.82	2.44	0.28	75.00	1.50	0.15	0.45	1.93
SLO	0.65	2.44	0.27	45.00	1.50	0.15	0.44	1.87

Descrizione dei materiali e del loro comportamento

Comportamento meccanico della muratura

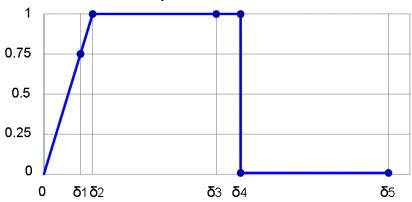
Le proprietà meccaniche del materiale muratura sono definite in modo da individuarne al meglio il comportamento in campo non lineare.


Le caratteristiche principali sono:

- Rigidezza iniziale secondo le caratteristiche elastiche (fessurate) del materiale;
- Redistribuzione delle sollecitazioni interne all'elemento tali da garantire l'equilibrio;
- Settaggio dello stato di danno secondo i parametri globali e locali;
- Degradazione della rigidezza nel ramo plastico;
- Controllo di duttilità mediante la definizione di drift massimo (δu) differenziato secondo quanto previsto nelle normative vigenti a seconda del meccanismo di danneggiamento agente sul pannello
- Eliminazione dell'elemento, al raggiungimento delle condizioni limite senza interruzione dell'analisi.

Il comportamento non lineare si attiva quando un valore di forza raggiunge il suo massimo valore definito come il minimo fra i criteri di resistenza pressoflessione e taglio.

Il comportamento dei maschi murari associati ai meccanismi di taglio e pressoflessione può essere descritto attraverso diversi tratti che rappresentano i progressivi livelli di danno.


Maschio con meccanismo a taglio

Il comportamento del maschio murario a taglio si può descrivere attraverso i seguenti tratti, rappresentativi dei progressivi livelli di danno relativi al diagramma precedente:

$0 - \delta_1$	elasticità
δ_1 - δ_2	incipiente di plasticità
δ_2 - δ_3	plastico per taglio
δ_3 - δ_4	incipiente rottura per taglio
δ_4 - δ_5	rottura per taglio
δ_5 - ∞	crisi grave

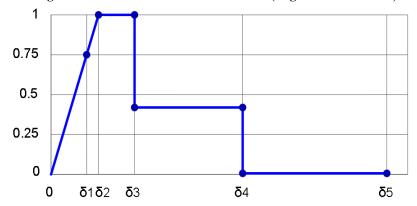
Maschio con meccanismo a pressoflessione

Il comportamento del maschio murario pressoflessione, invece, si può descrivere attraverso i seguenti tratti:

0 - δ1	elasticità
δ1 - δ2	incipiente di plasticità
δ2 - δ3	plastico per pressoflessione
δ3 - δ4	incipiente rottura per pressoflessione
δ4 - δ5	rottura per pressoflessione
δ5 - ∞	crisi grave

Alcuni tra questi livelli di rottura sono necessari per descrivere con maggiore cura il progredire della crisi permettendo una più accurata previsione degli interventi e del livello di degrado della muratura:

- Incipiente plasticità: Quando un elemento si trova ancora in campo elastico ma è prossimo alla plasticità
- Incipiente rottura: Quando un elemento è in campo plastico ma è prossimo alla rottura
- Crisi grave: Quando in seguito alla rottura dell'elemento le deformazioni diventano talmente significative da poter generare un crollo locale.


Il software mette a disposizione tre categorie di legame:

- Con degrado di resistenza a un valore residuo (Legame multilineare)
- Con resistenza pari al valore residuo (Legame bilineare)
- Priva di resistenza residua

Tra queste le categorie di legame utilizzate all'interno del progetto in esame sono:

• Con degrado di resistenza a un valore residuo (Legame multilineare)

Con degrado di resistenza a un valore residuo (Legame multilineare)

Questo tipo di legame è definito nella circolare al §C8.7.1.3.1 assumendo:

 $\delta 1: 0.75 * \delta 2$

δ2: deformazione in corrispondenza del limite elastico definito dalla rigidezza e resistenza limite

 $\delta 3: 0.005$

 $\delta 4: 0.015$

δ5: 2* δ4 Questa deformazione rappresenta lo stato di "crisi grave" non direttamente richiesta nella normativa ma

utile come avviso per il progettista.

	. 0		
Nome	Tipo	Colore	Descrizione
Muratura	Muratura		
C20/25	Calcestruzzo		
C25/30	Calcestruzzo		
B450	Acciaio armatura		NTC08

Muratura

Nome	Condizione del	Tipo legame	E	Eh	G	Peso	fm
	materiale		[N/mm2]	[N/mm2]	[N/mm2]	specifico	[N/cm2]
						[kN/m3]	
Muratura	Esistente	Muratura irregolare	2,310.00	2,310.00	770.00	18	531.30
		(Turnsek/Cacovic)					

Condizione del materiale: Esistente

Tipo legame: Muratura irregolare (Turnsek/Cacovic)

Nome	fk [N/cm2]	τ [N/cm2]	FC	γm
Muratura	309.93	13.86	1.20	3.00

Calcestruzzo

Nome	E [N/mm2]		1	fck [N/mm2]	γс	α cc
C25/30	31,476.00	13,115.00	25	25.0	1.50	0.85

Acciaio armatura

Nome	E [N/mm2]	G [N/mm2]	1	,	fyk [N/mm2]	γs
B450	206,000.00	79,231.00	79	484.0	450.0	1.15

Combinazione delle azioni

Carico Sismico:

Le verifiche allo stato limite ultimo (SLV) e allo stato limite di esercizio (SLD; SLO); devono essere effettuate per la seguente combinazione [Norme Tecniche 2018 §2.5.3].

$$E + G_{k1} + G_{k2} + \sum_{i} \Psi_{2i} Q_{Ki}$$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_{k1} + G_{k2} + \sum_{i} \Psi_{2i} Q_{ki}$$

Carico Statico:

La verifica allo stato limite ultimo per carichi statici viene condotta con la seguente combinazione dei carichi.

$$\gamma_{G1} G_{k1} + \gamma_{G2} G_{k2} + \gamma_{Q} \Psi_{0} Q_{k}$$

dove:

E azione sismica per lo stato limite in esame;

 $\begin{array}{ll} G_{k1} & \text{peso proprio di tutti gli elementi strutturali;} \\ G_{k2} & \text{peso proprio di tutti gli elementi non strutturali;} \\ Q_{Ki} & \text{valore caratteristico della azione variabile;} \end{array}$

 Ψ_2 coefficiente di combinazione;

 Ψ_0 coefficiente di combinazione per i carichi variabili

 γ_{G1} ; γ_{G2} ; γ_{O} : coefficienti parziali di sicurezza

I valori dei vari coefficienti sono scelti in base alla destinazione d'uso dei vari solai secondo quanto indicato nella norma. [Norme Tecniche 2018 Tabella 2.5.1].

N. Carico	Livell o	1		Gk2 [daN/m2]	Qk [daN/m2]	ψ0	ψ2	Note
1	1	Lineare [daN/m]	840	110	600	0.50	0.00	-

2	1	Lineare [daN/m]	840	110	600	0.50	0.00	-	
3	1	Lineare [daN/m]	840	110	600	0.50	0.00	-	
4	1	Lineare [daN/m]	840	110	600	0.50	0.00	-	
5	1	Lineare [daN/m]	840	110	600	0.50	0.00	-	
6	1	Lineare [daN/m]	840	110	600	0.50	0.00	-	
7	2	Lineare [daN/m]	390	60	480	0.50	0.00	-	
8	2	Lineare [daN/m]	390	60	480	0.50	0.00	-	
9	2	Lineare [daN/m]	390	60	480	0.50	0.00	-	
10	2	Lineare [daN/m]	390	60	480	0.50	0.00	-	

Note

CDM: Considera solo contributo dinamico della massa

N. Solaio	Gk1	Gk2	Qk	Carico	ψ0	ψ2
	[daN/m2]	[daN/m2]	[daN/m2]	dominante		
1	130	30	1	No	0.00	0.00
2	130	30	1	No	0.00	0.00
3	130	30	1	No	0.00	0.00
4	130	30	1	No	0.00	0.00
5	130	30	1	No	0.00	0.00
6	130	30	1	No	0.00	0.00
7	130	30	1	No	0.00	0.00
8	130	30	1	No	0.00	0.00
11	1	1	1	No	0.00	0.00

N. Falda	Gk1	Gk2	Qk	Carico	ψ0	ψ2
	[daN/m2]	[daN/m2]	[daN/m2]	dominante		
1	450	100	120	No	0.50	0.00

Verifiche per gli stati limite considerati

Secondo le indicazioni da normativa si devono eseguire le seguenti verifiche:

Stato limite Collasso (SLC):

$$D_{max}^{SLC} \leq D_{u}^{SLC}$$

 D_{max}^{SLC} : Spostamento massimo richiesto dalla normativa individuato dallo spettro elastico.

 D_u^{SLC}

: Spostamento massimo offerto dalla struttura corrispondente al minore tra:

- 1) il valore del taglio di base residuo pari all'80% di quello massimo
- il valore corrispondente al raggiungimento della soglia limite della deformazione angolare a SLC in tutti i maschi murari verticali di qualunque livello in una qualunque parete ritenuta significativa ai fini della sicurezza.

$$q* < 4.0$$

q*: rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente

Stato limite Vita (SLV):

$$D_{max}^{SLV} \leq D_{u}^{SLV}$$

 D_{max}^{SLV} : Spostamento massimo richiesto dalla normativa individuato dallo spettro elastico. : Spostamento massimo offerto dalla struttura individuato in corrispondenza di 0.75 D_u^{SLC} : $0^* < 3.0$ q* < 3.0

q*: rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente

Stato limite di Danno (SLD):

$$D_{max}^{SLD} \leq D_{u}^{SLD}$$

 D_{max}^{SLD} : Spostamento massimo richiesto dalla normativa, calcolato in base allo spettro sismico definito per lo stato limite di danno.

62

: Spostamento minore tra:

- 1) quello corrispondente al limite elastico della bilineare equivalente definita a partire dallo spostamento ultimo a SLC
- 2) quello corrispondente al raggiungimento della resistenza massima a taglio in tutti i maschi murari verticali in un qualunque livello di una qualunque parte ritenuta significativa ai fini dell'uso della costruzione (e comunque non prima dello spostamento per il quale si raggiunge un taglio di base pari a 0.7500 del taglio di base massimo)

Stato limite di Operatività (SLO):

$$D_{max}^{SLO} \leq D_u^{SLO}$$

 D_{max}^{SLO} : Spostamento massimo richiesto dalla normativa, calcolato in base allo spettro sismico definito per lo stato limite di operatività.

: Spostamento pari a 0.6670 di quello allo SLD.

Vulnerabilità sismica

Per ciascuno stato limite eseguito viene calcolato l'indice di rischio α (α_{SLC} , α_{SLV} , α_{SLD} , α_{SLD}). Questi parametri vengono calcolati come indicato nel seguito:

$$\begin{split} \alpha_{SLC} &= \frac{PGA_{CLC}}{PGA_{DLC}}\;;\\ \alpha_{SLV} &= \frac{PGA_{CLV}}{PGA_{DLV}}\;;\\ \alpha_{SLD} &= \frac{PGA_{CLD}}{PGA_{DLD}}\;;\\ \alpha_{SLO} &= \frac{PGA_{CLO}}{PGA_{DLO}}\;;\\ \end{split}$$

Accelerazioni di capacità: l'entità massima delle azioni, considerate nelle combinazioni di progetto previste, che la struttura è capace di sostenere.

- PGA_{CLC} :accelerazione di capacità corrispondente a SLC
- PGA_{CLV} :accelerazione di capacità corrispondente a SLV
- PGA_{CLD}: accelerazione di capacità corrispondente a SLD
- PGA_{CLO}: accelerazione di capacità corrispondente a SLO

Accelerazioni di domanda : Valori di riferimento delle accelerazioni dell'azione sismica

Tali valori vengono definiti a partire dal carico sismico definito nella forma dello spettro.

- PGA_{DLC} :accelerazione di picco al suolo corrispondente a SLC
- PGA_{DLV} :accelerazione di picco al suolo corrispondente a SLV
- PGA_{DLD}: accelerazione di picco al suolo corrispondente a SLD
- PGA_{DLO}: accelerazione di picco al suolo corrispondente a SLO

Dettaglio verifiche

N.T.	D: .	a · · ·	Г	D.	D CLC	* CI C	CI C	D	D CLV	* CT 17	CI II
N.	Dir. sisma	Carico sismico	Ecc.	Dmax	Du SLC	q* SLC	SLC	Dmax	Du SLV	q* SLV	SLV
			[cm]	SLC	[cm]		ver.	SLV	[cm]		ver.
				[cm]				[cm]			
1	+X	Uniforme	0.0	0.10	1.17	0.68	Sì	0.09	0.88	0.57	Sì
2	+X	Forze statiche	0.0	0.11	1.18	0.69	Sì	0.09	0.88	0.58	Sì
3	-X	Uniforme	0.0	0.11	0.63	0.74	Sì	0.09	0.47	0.62	Sì
4	-X	Forze statiche	0.0	0.11	0.65	0.76	Sì	0.09	0.49	0.64	Sì
5	+Y	Uniforme	0.0	0.21	0.65	1.20	Sì	0.11	0.49	1.01	Sì
6	+Y	Forze statiche	0.0	0.22	0.66	1.17	Sì	0.12	0.50	0.98	Sì
7	-Y	Uniforme	0.0	0.23	0.65	1.23	Sì	0.13	0.49	1.04	Sì
8	-Y	Forze statiche	0.0	0.25	0.68	1.20	Sì	0.13	0.51	1.01	Sì
9	+X	Uniforme	151.9	0.11	1.13	0.71	Sì	0.10	0.85	0.59	Sì
10	+X	Uniforme	-151.9	0.09	1.17	0.67	Sì	0.08	0.87	0.56	Sì
11	+X	Forze statiche	151.9	0.12	1.14	0.72	Sì	0.10	0.86	0.60	Sì
12	+X	Forze statiche	-151.9	0.11	1.21	0.68	Sì	0.09	0.90	0.57	Sì
13	-X	Uniforme	151.9	0.12	0.69	0.77	Sì	0.10	0.51	0.64	Sì
14	-X	Uniforme	-151.9	0.09	0.67	0.74	Sì	0.08	0.51	0.62	Sì
15	-X	Forze statiche	151.9	0.13	39.10	0.80	Sì	0.11	29.33	0.67	Sì

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

16	-X	Forze statiche	-151.9	0.10	0.64	0.75	Sì	0.08	0.48	0.63	Sì
17	+Y	Uniforme	235.5	0.24	0.65	1.27	Sì	0.14	0.49	1.06	Sì
18	+Y	Uniforme	-235.5	0.19	0.64	1.16	Sì	0.10	0.48	0.97	Sì
19	+Y	Forze statiche	235.5	0.27	0.66	1.25	Sì	0.15	0.49	1.05	Sì
20	+Y	Forze statiche	-235.5	0.18	0.88	1.09	Sì	0.12	0.66	0.92	Sì
21	-Y	Uniforme	235.5	0.27	0.67	1.29	Sì	0.16	0.50	1.08	Sì
22	-Y	Uniforme	-235.5	0.20	0.66	1.16	Sì	0.11	0.49	0.97	Sì
23	-Y	Forze statiche	235.5	0.30	0.68	1.28	Sì	0.18	0.51	1.07	Sì
24	-Y	Forze statiche	-235.5	0.22	0.76	1.15	Sì	0.12	0.57	0.96	Sì

N.	Dir. sisma	Carico sismico	Ecc. [cm]	Dmax SLD [cm]	Dd SLD [cm]	SLD ver.	Dmax SLO [cm]	Do SLO [cm]	SLO ver.
1	+X	Uniforme	0.0	0.04	0.15	Sì	0.03	0.10	Sì
2	+X	Forze statiche	0.0	0.04			0.03		Sì
3	-X	Uniforme	0.0	0.04	0.14	Sì	0.03	0.10	Sì
4	-X	Forze statiche	0.0	0.04	0.15	Sì	0.03	0.10	Sì
5	+Y	Uniforme	0.0	0.05	0.11	Sì	0.04	0.07	Sì
6	+Y	Forze statiche	0.0	0.05	0.12	Sì	0.04	0.08	Sì
7	-Y	Uniforme	0.0	0.05	0.11	Sì	0.04	0.07	Sì
8	-Y	Forze statiche	0.0	0.06	0.13	Sì	0.05	0.09	Sì
9	+X	Uniforme	151.9	0.04	0.16	Sì	0.03	0.11	Sì
10	+X	Uniforme	-151.9	0.03	0.14	Sì	0.03	0.09	Sì
11	+X	Forze statiche	151.9	0.04	0.17	Sì	0.04	0.11	Sì
12	+X	Forze statiche	-151.9	0.04	0.16	Sì	0.03	0.10	Sì
13	-X	Uniforme	151.9	0.04	0.15	Sì	0.03	0.10	Sì
14	-X	Uniforme	-151.9	0.03	0.12	Sì	0.03	0.08	Sì
15	-X	Forze statiche	151.9	0.05	0.16	Sì	0.04	0.11	Sì
16	-X	Forze statiche	-151.9	0.04	0.13	Sì	0.03	0.09	Sì
17	+Y	Uniforme	235.5	0.05	0.11	Sì	0.04	0.07	Sì
18	+Y	Uniforme	-235.5	0.05	0.11	Sì	0.04	0.07	Sì
19	+Y	Forze statiche	235.5	0.06	0.12	Sì	0.05	0.08	Sì
20	+Y	Forze statiche	-235.5	0.05	0.13	Sì	0.04	0.09	Sì
21	-Y	Uniforme	235.5	0.05	0.12	Sì	0.04	0.08	Sì
22	-Y	Uniforme	-235.5	0.05	0.11	Sì	0.04	0.07	Sì
23	-Y	Forze statiche	235.5	0.06	0.14	Sì	0.05	0.09	Sì
24	-Y	Forze statiche	-235.5	0.05	0.13	Sì	0.04	0.09	Sì

N.	Dir. sisma	Carico sismico	Ecc. [cm]	α SLC	α SLV	α SLD	αSLO
1	+X	Uniforme	0.0	3.207	3.264	4.044	3.324
2	+X	Forze statiche	0.0	3.111	3.168	3.973	3.265
3	-X	Uniforme	0.0	2.169	2.287	3.709	3.048
4	-X	Forze statiche	0.0	2.126	2.238	3.621	2.976
5	+Y	Uniforme	0.0	1.703	1.736	2.280	1.872
6	+Y	Forze statiche	0.0	1.657	1.696	2.336	1.917
7	-Y	Uniforme	0.0	1.645	1.676	2.216	1.819
8	-Y	Forze statiche	0.0	1.616	1.652	2.280	1.871
9	+X	Uniforme	151.9	2.960	3.022	3.886	3.193
10	+X	Uniforme	-151.9	3.359	3.412	4.104	3.374
11	+X	Forze statiche	151.9	2.889	2.950	3.830	3.147
12	+X	Forze statiche	-151.9	3.215	3.270	4.032	3.314
13	-X	Uniforme	151.9	2.143	2.249	3.581	2.942

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

14	-X	Uniforme	-151.9	2.344	2.450	3.694	3.037
15	-X	Forze statiche	151.9	4.976	4.449	3.408	2.800
16	-X	Forze statiche	-151.9	2.205	2.317	3.657	3.006
17	+Y	Uniforme	235.5	1.635	1.664	2.161	1.775
18	+Y	Uniforme	-235.5	1.717	1.756	2.359	1.937
19	+Y	Forze statiche	235.5	1.557	1.591	2.179	1.789
20	+Y	Forze statiche	-235.5	2.048	2.067	2.500	2.053
21	-Y	Uniforme	235.5	1.576	1.604	2.124	1.743
22	-Y	Uniforme	-235.5	1.729	1.766	2.364	1.941
23	-Y	Forze statiche	235.5	1.492	1.525	2.138	1.755
24	-Y	Forze statiche	-235.5	1.799	1.829	2.381	1.954

Dalla tabella riassuntiva dei risultati sopra riportata si desume che le verifiche risultano soddisfatte, le analisi più significative sono la n° . 4 e la n° . 23 , rispettivamente per le direzioni X ed Y .

La scelta di tali analisi come analisi "significative" è fatta in base alla ricerca del minore valore del parametro di vulnerabilità sismica.

Riportiamo qui di seguito i dettagli delle analisi sopra citate.

Sintesi dei risultati

Legenda risultati

		C.A
Integro		
Rottura pe	er taglio	
Plastico p	resso flessione	
Rottura pr	resso flessione	
Rottura pe	er compressione	
Rottura pe	er trazione	
Rottura pe	er taglio	
		Legno
Integro		
Rottura pr	esso flessione	
Rottura pe	er compressione	
Rottura pe	er trazione	
<u>.</u>		Acciaio
Integro		
Plastico p	resso flessione	
Plastico p	er compressione	
Plastico p	er trazione	
Elemento	non efficace	
Ritorno in	fase elastica	

ı	Integro	Crisi
	Rottura presso flessione	Rottu
ı	Rottura per compressione	Rottu
	Rottura per trazione	Rottu
	Acciaio	Eleme
	Integro	
	Plastico presso flessione	
I	Plastico per compressione	
	Plastico per trazione	
	Elemento non efficace	

Analisi sismica n. 4 Direzione X

	wuratura
Integro	
Incipiente plasticità	
Plastico per taglio	
Incipiente rottura per taglio	
Rottura per taglio	
Plastico presso flessione	
Incipiente rottura presso flessione	
Rottura presso flessione	
Crisi grave	
Rottura per compressione	
Rottura per trazione	
Rottura in fase elastica	
Elemento non efficace	

Deformata Pianta

Curva Pushover (analisi n. 4)

Vulnerabilità Sismica

							TRc		TR=cost	
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA
				[m/s2]	(TR)			(TR)	[m/s2]	
					[m/s2]					
SLC	> 2475	1462	> 1.6929	2.6644	3.1765	2.42	0.32	1.1922	5.6642	2.1259
SLV	> 2475	712	> 3.4761	2.0738	3.1765	2.42	0.32	1.5317	4.6413	2.2380
SLD	> 2475	75	> 33.0000	0.8152	3.1765	2.42	0.32	3.8965	2.9520	3.6211
SLO	850	45	18.8889	0.6543	2.2131	2.42	0.30	3.3823	1.9470	2.9756

I valori delle PGA riportati sono da ritenersi calcolati su suolo rigido.

Il medesimo valore su suolo di riferimento è ottenibile moltiplicando gli stessi per (SS*St); i corrispondenti valori nella tabella seguente.

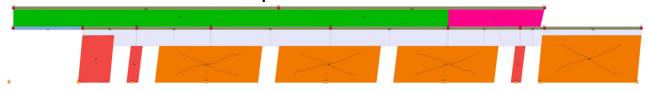
	TRc									TR=cost		
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA		
				[m/s2]	(TR)			(TR)	[m/s2]			
					[m/s2]							
SLC	> 2475	1462	> 1.6929	3.4787	3.9066	2.42	0.32	1.1230	7.3954	2.1259		
SLV	> 2475	712	> 3.4761	2.8889	3.9066	2.42	0.32	1.3522	6.4656	2.2380		
SLD	> 2475	75	> 33.0000	1.2228	3.9066	2.42	0.32	3.1947	4.4279	3.6211		
SLO	850	45	18.8889	0.9815	3.0374	2.42	0.30	3.0947	2.9205	2.9756		

Analisi sismica n. 23 Direzione Y

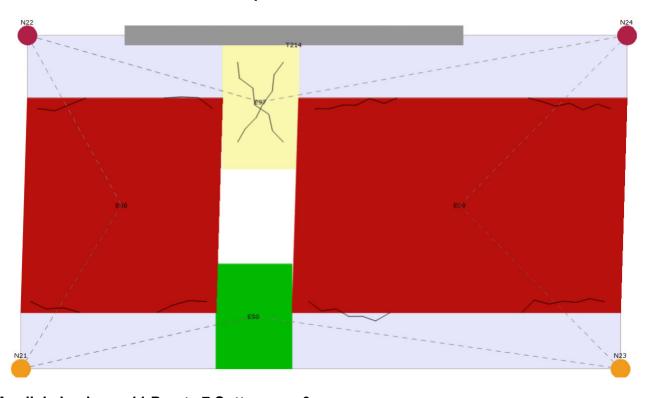
Deformata Pianta

Curva Pushover (analisi n. 23)

Vulnerabilità Sismica

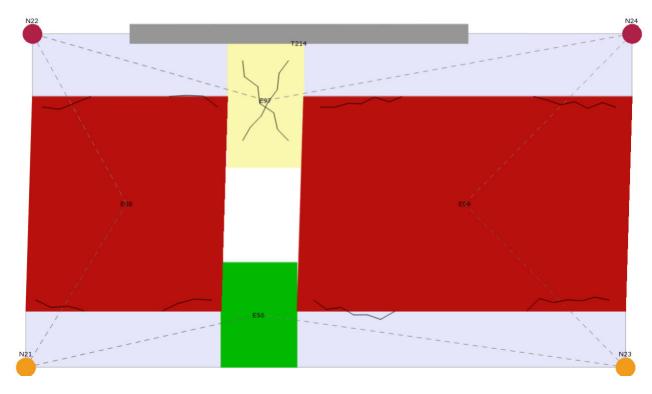

	TRc								TR=cost		
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA	
				[m/s2]	(TR)			(TR)	[m/s2]		
					[m/s2]						
SLC	> 2475	1462	> 1.6929	2.6644	3.1765	2.42	0.32	1.1922	3.9747	1.4918	
SLV	> 2475	712	> 3.4761	2.0738	3.1765	2.42	0.32	1.5317	3.1616	1.5245	
SLD	560	75	7.4667	0.8152	1.8992	2.42	0.30	2.3297	1.7433	2.1384	
SLO	174	45	3.8667	0.6543	1.1850	2.42	0.29	1.8111	1.1481	1.7546	

I valori delle PGA riportati sono da ritenersi calcolati su suolo rigido.


Il medesimo valore su suolo di riferimento è ottenibile moltiplicando gli stessi per (SS*St); i corrispondenti valori nella tabella seguente.

						TRc			TR=cost	
	TR C	TR D	αTR	PGA D	PGA C	F0 (TR)	T* C (TR)	α PGA	PGA C	α PGA
				[m/s2]	(TR)			(TR)	[m/s2]	
					[m/s2]					
SLC	> 2475	1462	> 1.6929	3.4787	3.9066	2.42	0.32	1.1230	5.1895	1.4918
SLV	> 2475	712	> 3.4761	2.8889	3.9066	2.42	0.32	1.3522	4.4043	1.5245
SLD	560	75	7.4667	1.2228	2.6948	2.42	0.30	2.2038	2.6149	2.1384
SLO	174	45	3.8667	0.9815	1.7776	2.42	0.29	1.8111	1.7221	1.7546

Analisi sismica n. 11 Parete 7 Sottopasso 3


Analisi sismica n. 18 Parete 8 Sottopasso 6

Analisi sismica n. 11 Parete 7 Sottopasso 3

Analisi sismica n. 18 Parete 8 Sottopasso 6

Conclusioni

Analisi sismica n. 4 Direzione X

Analisi sismica n. 23 Direzione Y

Stato limite	α PGA (TR)	αTR	α PGA (TR)	αTR
SLC	1.1922	> 1.6929	1.1922	> 1.6929

(*) Tutti i valori di α_{TR} sono da ritenersi calcolati come α_{TR} =TR_C/TR_D (privi di qualsiasi esponente correttivo).

In base alla tipologia di edificio si assume ζ_{E_lim} = 1.000

La verifica risulta superata, la condizione più gravosa si ha in corrispondenza della direzione [Y] del sisma.

Allegati

Elementi di struttura

Livello 1

Pannello + Cordolo C.A. (1)

N.	Parete	Materiale	Rinforzo	Quota	Altezza	Spessore	Materiale	Materiale	Quota	Base	Altezza
		pannello		pannello	[cm]	[cm]	calcestruzzo	acciaio	cordolo	sezione	sezione
				[cm]					[cm]	[cm]	[cm]
1	1	Muratura	-	350	350	28.0	C20/25	B450	350	28.0	50.0
35	2	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
38	2	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
29	3	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
32	3	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
48	4	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
49	4	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
39	5	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
51	6	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	50.0
52	6	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
28	7	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
15	8	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

46	9	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
19	10	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
41	11	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
43	12	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
25	13	Muratura	_	350	350	28.0	C20/25	B450	350	28.0	14.0
172	14	Muratura	_	350	350	30.0	C25/30	B450	350	30.0	15.0

Pannello + Cordolo C A (2)

N.	Parete	ordolo C.A	1	Af intrad.	Af estrad.	N. barre	N harre	Copriferro	Dacco	Area	Porzione
IN.	laicic	[cm2]	[cm4]	[cm2]	[cm2]	intrad.	Estrad.	[cm]	staffe	staffe	deformabile
									[cm]	[cm2]	
1	1	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
35	2	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
38	2	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
29	3	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
32	3	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
48	4	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
49	4	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
39	5	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
51	6	1,400.00	291,666.6 6	1.57	1.57	2	2	2.0	33	0.57	0.50
52	6	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
28	7	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
15	8	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
46	9	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
19	10	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
41	11	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
43	12	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
25	13	392.00	6,402.67	2.26	2.26	2	2	2.0	33	0.57	0.50
172	14	450.00	8,437.50	4.02	4.02	2	2	2.5	25	1.01	0.50

Trave C.A. (1)

N.	Parete	Materiale	Materiale acciaio	Quota I	Quota J	Base	Altezza	J
		calcestruzzo		[cm]	[cm]	sezione [cm]	sezione [cm]	[cm4]
37	2	C20/25	B450	350	350	28.0	50.0	291,666.66
31	3	C20/25	B450	350	350	28.0	50.0	291,666.66
50	4	C20/25	B450	350	350	28.0	50.0	291,666.66
40	5	C20/25	B450	350	350	28.0	50.0	291,666.66
34	6	C20/25	B450	350	350	30.0	14.0	6,860.00
27	7	C20/25	B450	350	350	30.0	14.0	6,860.00
45	9	C20/25	B450	350	350	30.0	14.0	6,860.00
42	11	C20/25	B450	350	350	30.0	14.0	6,860.00
44	12	C20/25	B450	350	350	28.0	14.0	6,402.67

Trave C.A. (2)

N.	Parete	Af	Af	N.	barre	N.	barre	Copriferro	Passo	Area staffe
		intradosso	estradosso	intrad	osso	estrac	losso	[cm]	staffe	[cm2]
		[cm2]	[cm2]						[cm]	

37	2	1.57	1.57	2	2	2.0	33	0.57
31	3	1.57	1.57	2	2	2.0	33	0.57
50	4	1.57	1.57	2	2	2.0	33	0.57
40	5	1.57	1.57	2	2	2.0	33	0.57
34	6	1.57	1.57	2	2	2.0	33	0.57
27	7	1.57	1.57	2	2	2.0	33	0.57
45	9	1.57	1.57	2	2	2.0	33	0.57
42	11	1.57	1.57	2	2	2.0	33	0.57
44	12	2.26	2.26	2	2	2.0	33	0.57

Solaio

N.	Quota	Spessore	G	Ex	Ey	Scarico masse	Tipo
11.	[cm]	[cm]	[N/mm2]	[N/mm2]		Scarico masse	Про
1	350	-	-	-	-	Monodirezional e	Impalcato rigido
2	350	-	-	-	-	Monodirezional e	Impalcato rigido
3	350	-	-	-	-	Monodirezional e	Impalcato rigido
4	350	-	-	-	-	Monodirezional e	Impalcato rigido
5	350	-	-	-	-	Monodirezional e	Impalcato rigido
6	350	-	-	-	-	Monodirezional e	Impalcato rigido
7	350	-	-	-	-	Monodirezional e	Impalcato rigido
8	350	-	-	-	-	Monodirezional e	Impalcato rigido

Livello 2

Pannello + Cordolo C.A. (1)

N.	Parete	Materiale	Rinforzo	Quota	Altezza	Spessore	Materiale	Materiale	Quota	Base	Altezza
		pannello		pannello	[cm]	[cm]	calcestruzzo	acciaio	cordolo	sezione	sezione
				[cm]					[cm]	[cm]	[cm]
86	6	Muratura	_	480	130	28.0	C20/25	B450	480	28.0	40.0
79	7	Muratura	-	480	130	28.0	C20/25	B450	480	28.0	40.0
83	9	Muratura	-	480	130	28.0	C20/25	B450	480	28.0	40.0
82	11	Muratura	-	480	130	28.0	C20/25	B450	480	28.0	40.0

Pannello + Cordolo C.A. (2)

N.	Parete		J [cm4]	Af intrad. [cm2]				Copriferro [cm]	staffe		Porzione deformabile
86	6	1,120.00	149,333.3 3	2.26	2.26	2	2	2.0	30	0.57	0.50
79	7	1,120.00	149,333.3 3	2.26	2.26	2	2	2.0	30	0.57	0.50
83	9	1,120.00	149,333.3 3	2.26	2.26	2	2	2.0	30	0.57	0.50
82	11	1,120.00	149,333.3	2.26	2.26	2	2	2.0	30	0.57	0.50

Solaio

N.	Quota	Spessore	G	Ex	Ey	Scarico masse	Tipo
	[cm]	[cm]	[N/mm2]	[N/mm2]	[N/mm2]		

11	480	4.0	10.00	3,000.00	0.00	Monodirezional	Fittizio
						e	

Elementi di copertura Livello 2 Trave C.A. (1)

N.	Pare	te Materiale calcestruzzo	Materiale acciaio	Base sezione	Altezza sezione	J [cm4]
100		G20/25	D 450	[cm]	[cm]	270 440 00
123	6	C20/25	B450	60.0	42.0	370,440.00
125	6	C20/25	B450	60.0	42.0	370,440.00
127	6	C20/25	B450	60.0	42.0	370,440.00
129	6	C20/25	B450	60.0	42.0	370,440.00
130	6	C20/25	B450	60.0	42.0	370,440.00
132	7	C20/25	B450	60.0	42.0	370,440.00
134	7	C20/25	B450	60.0	42.0	370,440.00
136	7	C20/25	B450	60.0	42.0	370,440.00
138	7	C20/25	B450	60.0	42.0	370,440.00
140	7	C20/25	B450	60.0	42.0	370,440.00
142	7	C20/25	B450	60.0	42.0	370,440.00
144	7	C20/25	B450	60.0	42.0	370,440.00
146	7	C20/25	B450	60.0	42.0	370,440.00
148	7	C20/25	B450	60.0	42.0	370,440.00
150	7	C20/25	B450	60.0	42.0	370,440.00
152	7	C20/25	B450	60.0	42.0	370,440.00
154	7	C20/25	B450	60.0	42.0	370,440.00
156	7	C20/25	B450	60.0	42.0	370,440.00
157	7	C20/25	B450	60.0	42.0	370,440.00
158	7	C20/25	B450	60.0	42.0	370,440.00
160	9	C20/25	B450	60.0	42.0	370,440.00
162	9	C20/25	B450	60.0	42.0	370,440.00
164	9	C20/25	B450	60.0	42.0	370,440.00
165	9	C20/25	B450	60.0	42.0	370,440.00
166	9	C20/25	B450	60.0	42.0	370,440.00
95	11	C20/25	B450	60.0	42.0	370,440.00
97	11	C20/25	B450	60.0	42.0	370,440.00
99	11	C20/25	B450	60.0	42.0	370,440.00
101	11	C20/25	B450	60.0	42.0	370,440.00
103	11	C20/25	B450	60.0	42.0	370,440.00
105	11	C20/25	B450	60.0	42.0	370,440.00
107	11	C20/25	B450	60.0	42.0	370,440.00
109	11	C20/25	B450	60.0	42.0	370,440.00
111	11	C20/25	B450	60.0	42.0	370,440.00
113	11	C20/25	B450	60.0	42.0	370,440.00
115	11	C20/25	B450	60.0	42.0	370,440.00
117	11	C20/25	B450	60.0	42.0	370,440.00
119	11	C20/25	B450	60.0	42.0	370,440.00
121	11	C20/25	B450	60.0	42.0	370,440.00
122	11	C20/25	B450	60.0	42.0	370,440.00

Trave C.A. (2)

N.	Parete	Af	Af	N. barre	N. barre	Copriferro	Passo	Area staffe
		intradosso	estradosso	intradosso	estradosso	[cm]	staffe	[cm2]
		[cm2]	[cm2]				[cm]	
123	6	3.39	3.39	3	3	2.0	25	0.57

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

125	6	3.39	3.39	3	3	2.0	25	0.57
127	6	3.39	3.39	3	3	2.0	25	0.57
129	6	3.39	3.39	3	3	2.0	25	0.57
130	6	3.39	3.39	3	3	2.0	25	0.57
132	7	3.39	3.39	3	3	2.0	25	0.57
134	7	3.39	3.39	3	3	2.0	25	0.57
136	7	3.39	3.39	3	3	2.0	25	0.57
138	7	3.39	3.39	3	3	2.0	25	0.57
140	7	3.39	3.39	3	3	2.0	25	0.57
142	7	3.39	3.39	3	3	2.0	25	0.57
144	7	3.39	3.39	3	3	2.0	25	0.57
146	7	3.39	3.39	3	3	2.0	25	0.57
148	7	3.39	3.39	3	3	2.0	25	0.57
150	7	3.39	3.39	3	3	2.0	25	0.57
152	7	3.39	3.39	3	3	2.0	25	0.57
154	7	3.39	3.39	3	3	2.0	25	0.57
156	7	3.39	3.39	3	3	2.0	25	0.57
157	7	3.39	3.39	3	3	2.0	25	0.57
158	7	3.39	3.39	3	3	2.0	25	0.57
160	9	3.39	3.39	3	3	2.0	25	0.57
162	9	3.39	3.39	3	3	2.0	25	0.57
164	9	3.39	3.39	3	3	2.0	25	0.57
165	9	3.39	3.39	3	3	2.0	25	0.57
166	9	3.39	3.39	3	3	2.0	25	0.57
95	11	3.39	3.39	3	3	2.0	25	0.57
97	11	3.39	3.39	3	3	2.0	25	0.57
99	11	3.39	3.39	3	3	2.0	25	0.57
101	11	3.39	3.39	3	3	2.0	25	0.57
103	11	3.39	3.39	3	3	2.0	25	0.57
105	11	3.39	3.39	3	3	2.0	25	0.57
107	11	3.39	3.39	3	3	2.0	25	0.57
109	11	3.39	3.39	3	3	2.0	25	0.57
111	11	3.39	3.39	3	3	2.0	25	0.57
113	11	3.39	3.39	3	3	2.0	25	0.57
115	11	3.39	3.39	3	3	2.0	25	0.57
117	11	3.39	3.39	3	3	2.0	25	0.57
119	11	3.39	3.39	3	3	2.0	25	0.57
121	11	3.39	3.39	3	3	2.0	25	0.57
122	11	3.39	3.39	3	3	2.0	25	0.57

Pilastro C.A. (1)

N.	Materiale calcestruzzo	Materiale acciaio	Base sezione [cm]	Altezza sezione [cm]	Area [cm2]	Angolo [°]
167	C20/25	B450	29.0	29.0	841.00	0
168	C20/25	B450	29.0	70.0	2,030.00	0
169	C20/25	B450	29.0	70.0	2,030.00	0
170	C20/25	B450	29.0	70.0	2,030.00	0
171	C20/25	B450	29.0	70.0	2,030.00	0

Pilastro C.A. (2)

N.	Af lato b	Af lato h	N.	N.	Copriferro	Passo staffe	Area staffe
	[cm2]	[cm2]	barre	barre	[cm]	[cm]	[cm2]
			lato b	lato h			

167	4.02	4.02	2	2	2.0	20	0.57
168	4.02	4.02	2	2	2.0	20	0.57
169	4.02	4.02	2	2	2.0	20	0.57
170	4.02	4.02	2	2	2.0	20	0.57
171	4.02	4.02	2	2	2.0	20	0.57

Falda

-		`.	•	Spessore [cm]	G [N/mm2]		-	Scarico masse	Tipo
	1	650	650	4.0	12,484.17	84,178.95	29,962.00	Monodirezional	Laterocemento
								e	

Telaio equivalente Parete : 1 Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
1	50,029	-50,879	0	0
3	50,659	-50,879	0	0
2	50,029	-50,879	350	1
4	50,659	-50,879	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
51	315	0	0
52	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	. 1		Altezza [cm]	3 .7	Baricentro Z		Nodo sotto
			[]	[]	[•]	[cm]	[****]	sopi u	
1	Muratura	-	28.0	630.0	350.0	315	175	51	52

Parete: 2

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
3	50,659	-50,879	0	0
45	50,659	-48,918	0	0
19	50,659	-48,471	0	0
5	50,659	-47,841	0	0
4	50,659	-50,879	350	1
46	50,659	-48,918	350	1
20	50,659	-48,471	350	1
6	50,659	-47,841	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
53	466	0	0
55	638	0	0
57	748	0	0
59	1,036	0	0
61	1,187	0	0
63	2,723	0	0
54	466	350	1

56	638	350	1	
58	748	350	1	
60	1,036	350	1	
62	1,187	350	1	
64	2,723	350	1	

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X [cm]	[cm]	sopra	sotto
15	Muratura	-	28.0	45.0	300.0	1,036	150	59	60
16	Muratura	-	28.0	46.5	300.0	1,187	150	61	62
11	Muratura	-	28.0	138.3	326.9	69	163	3	4
17	Muratura	-	28.0	251.2	326.9	1,835	163	45	46
10	Muratura	-	28.0	630.0	350.0	2,723	175	63	64
12	Muratura	-	28.0	155.0	190.0	466	205	53	54
14	Muratura	-	28.0	30.0	190.0	748	205	57	58
13	Muratura	-	28.0	30.0	80.0	638	260	55	56

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sinistro	destro
						[cm]			
3	Muratura	-	28.0	80.0	220.0	583	110	53	55
5	Muratura	-	28.0	80.0	220.0	693	110	55	57
2	Muratura	-	28.0	250.0	50.0	263	325	4	54
4	Muratura	-	28.0	80.0	50.0	583	325	54	56
6	Muratura	-	28.0	80.0	50.0	693	325	56	58
7	Muratura	-	28.0	250.0	50.0	888	325	58	60
8	Muratura	-	28.0	105.0	50.0	1,111	325	60	62
9	Muratura	-	28.0	500.0	50.0	1,460	325	62	46

Parete: 3

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
7	45,949	-47,841	0	0
28	46,579	-47,841	0	0
23	47,029	-47,841	0	0
5	50,659	-47,841	0	0
8	45,949	-47,841	350	1
29	46,579	-47,841	350	1
24	47,029	-47,841	350	1
6	50,659	-47,841	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
65	1,200	0	0
67	1,310	0	0
69	1,420	0	0
71	1,530	0	0
73	1,695	0	0
75	2,385	0	0
77	3,125	0	0

79	3,865	0	0
66	1,200	350	1
68	1,310	350	1
70	1,420	350	1
72	1,530	350	1
74	1,695	350	1
76	2,385	350	1
78	3,125	350	1
80	3,865	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
42	Muratura	-	28.0	240.0	300.0	2,385	150	75	76
43	Muratura	-	28.0	240.0	300.0	3,125	150	77	78
44	Muratura	-	28.0	240.0	300.0	3,865	150	79	80
45	Muratura	-	28.0	225.0	326.9	4,598	163	5	6
34	Muratura	-	28.0	525.0	215.0	263	191	7	8
35	Muratura	-	28.0	25.0	215.0	618	191	28	29
36	Muratura	-	28.0	25.0	215.0	1,093	191	23	24
41	Muratura	-	28.0	140.0	190.0	1,695	205	73	74
37	Muratura	-	28.0	30.0	80.0	1,200	260	65	66
38	Muratura	-	28.0	30.0	80.0	1,310	260	67	68
39	Muratura	-	28.0	30.0	80.0	1,420	260	69	70
40	Muratura	-	28.0	30.0	80.0	1,530	260	71	72

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sinistro	destro
						[cm]			
18	Muratura	-	28.0	80.0	220.0	565	110	7	28
20	Muratura	-	28.0	80.0	220.0	1,145	110	23	65
22	Muratura	-	28.0	80.0	220.0	1,255	110	65	67
24	Muratura	-	28.0	80.0	220.0	1,365	110	67	69
26	Muratura	-	28.0	80.0	220.0	1,475	110	69	71
28	Muratura	-	28.0	80.0	220.0	1,585	110	71	73
19	Muratura	-	28.0	80.0	50.0	565	325	8	29
21	Muratura	-	28.0	80.0	50.0	1,145	325	24	66
23	Muratura	-	28.0	80.0	50.0	1,255	325	66	68
25	Muratura	-	28.0	80.0	50.0	1,365	325	68	70
27	Muratura	-	28.0	80.0	50.0	1,475	325	70	72
29	Muratura	-	28.0	80.0	50.0	1,585	325	72	74
30	Muratura	-	28.0	500.0	50.0	2,015	325	74	76
31	Muratura	-	28.0	500.0	50.0	2,755	325	76	78
32	Muratura	-	28.0	500.0	50.0	3,495	325	78	80
33	Muratura	-	28.0	500.0	50.0	4,235	325	80	6

Parete: 4

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
9	45,949	-50,331	0	0
34	45,949	-49,701	0	0

30	45,949	-49,250	0	0
7	45,949	-47,841	0	0
10	45,949	-50,331	350	1
35	45,949	-49,701	350	1
31	45,949	-49,250	350	1
8	45,949	-47,841	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
81	315	0	0
83	1,820	0	0
85	2,053	0	0
82	315	350	1
84	1,820	350	1
86	2,053	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X [cm]	Baricentro Z [cm]	Nodo sopra	Nodo sotto
51	Muratura	-	28.0	154.6	326.9	1,158	163	30	31
54	Muratura	-	28.0	120.0	326.9	2,430	163	7	8
50	Muratura	-	28.0	630.0	350.0	315	175	81	82
52	Muratura	-	28.0	170.0	190.0	1,820	205	83	84
53	Muratura	-	28.0	135.0	190.0	2,053	205	85	86

Macroelementi Fasce

_									
N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sinistro	destro
						[cm]			
47	Muratura	_	28.0	80.0	220.0	1,945	110	83	85
46	Muratura	-	28.0	500.0	50.0	1,485	325	31	84
48	Muratura	_	28.0	80.0	50.0	1,945	325	84	86
49	Muratura	-	28.0	250.0	50.0	2,245	325	86	8

Parete: 5

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
9	45,949	-50,331	0	0
47	46,741	-50,331	0	0
39	49,579	-50,331	0	0
11	50,029	-50,331	0	0
10	45,949	-50,331	350	1
48	46,741	-50,331	350	1
40	49,579	-50,331	350	1
12	50,029	-50,331	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
87	1,585	0	0
89	2,325	0	0
91	3,015	0	0
93	3,180	0	0

95	3,290	0	0
97	3,400	0	0
99	3,510	0	0
88	1,585	350	1
90	2,325	350	1
92	3,015	350	1
94	3,180	350	1
96	3,290	350	1
98	3,400	350	1
100	3,510	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
70	Muratura	-	28.0	240.0	300.0	845	150	47	48
71	Muratura	-	28.0	240.0	300.0	1,585	150	87	88
72	Muratura	-	28.0	240.0	300.0	2,325	150	89	90
69	Muratura	-	28.0	225.0	326.9	113	163	9	10
78	Muratura	-	28.0	25.0	215.0	3,618	191	39	40
73	Muratura	-	28.0	140.0	190.0	3,015	205	91	92
74	Muratura	-	28.0	30.0	80.0	3,180	260	93	94
75	Muratura	-	28.0	30.0	80.0	3,290	260	95	96
76	Muratura	-	28.0	30.0	80.0	3,400	260	97	98
77	Muratura	-	28.0	30.0	80.0	3,510	260	99	100

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sinistro	destro
						[cm]			
59	Muratura	-	28.0	80.0	220.0	3,125	110	91	93
61	Muratura	-	28.0	80.0	220.0	3,235	110	93	95
63	Muratura	-	28.0	80.0	220.0	3,345	110	95	97
65	Muratura	-	28.0	80.0	220.0	3,455	110	97	99
67	Muratura	-	28.0	80.0	220.0	3,565	110	99	39
55	Muratura	-	28.0	500.0	50.0	475	325	10	48
56	Muratura	-	28.0	500.0	50.0	1,215	325	48	88
57	Muratura	-	28.0	500.0	50.0	1,955	325	88	90
58	Muratura	-	28.0	500.0	50.0	2,695	325	90	92
60	Muratura	-	28.0	80.0	50.0	3,125	325	92	94
62	Muratura	-	28.0	80.0	50.0	3,235	325	94	96
64	Muratura	-	28.0	80.0	50.0	3,345	325	96	98
66	Muratura	-	28.0	80.0	50.0	3,455	325	98	100
68	Muratura	-	28.0	80.0	50.0	3,565	325	100	40

Parete: 6

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
1	50,029	-50,879	0	0
11	50,029	-50,331	0	0
36	50,029	-49,701	0	0
43	50,029	-48,918	0	0
13	50,029	-48,471	0	0

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

2	50,029	-50,879	350	1
12	50,029	-50,331	350	1
37	50,029	-49,701	350	1
44	50,029	-48,918	350	1
14	50,029	-48,471	350	1
38	50,029	-49,701	480	2
15	50,029	-48,471	480	2

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
101	1,793	480	2

Macroelementi Maschi

1.10001	Cerement Wasen	·							
N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
81	Muratura	-	28.0	685.0	235.0	1,471	118	36	37
80	Muratura	-	28.0	1,018.3	303.8	509	152	11	12
82	Muratura	-	28.0	37.7	303.8	1,942	152	43	44
84	Muratura	-	28.0	447.3	125.0	2,185	415	43	15
83	Muratura	-	28.0	782.7	132.5	1,570	416	37	101

Macroelementi Fasce

N.	Materiale	Rinforzo	1		[cm]		Baricentro Z [cm]		Nodo destro
						[cm]			
79	Muratura	-	28.0	110.0	115.0	1,073	293	12	37

Parete: 7

Nodi 3D

Nodo X [cm] Y [cm] Z [cm] Livello									
Nodo	X [cm]	Y [cm]	Z [cm]	Livello					
16	46,579	-48,471	0	0					
21	47,029	-48,471	0	0					
13	50,029	-48,471	0	0					
19	50,659	-48,471	0	0					
17	46,579	-48,471	350	1					
22	47,029	-48,471	350	1					
14	50,029	-48,471	350	1					
20	50,659	-48,471	350	1					
18	46,579	-48,471	480	2					
15	50,029	-48,471	480	2					

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
102	802	0	0
104	1,285	0	0
106	2,057	0	0
108	2,822	0	0
110	3,292	0	0
103	802	350	1
105	1,285	350	1
107	2,057	350	1
109	2,822	350	1

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

	111	3,292	350	1
Ī	112	1,725	480	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X [cm]	Baricentro Z [cm]		Nodo sotto
86	Muratura	-	28.0	75.0	235.0	803	118	102	103
87	Muratura	-	28.0	670.0	235.0	1,285	118	104	105
88	Muratura	-	28.0	655.0	235.0	2,058	118	106	107
89	Muratura	-	28.0	655.0	235.0	2,823	118	108	109
90	Muratura	-	28.0	65.0	235.0	3,293	118	110	111
85	Muratura	-	28.0	205.0	303.8	553	152	21	22
91	Muratura	-	28.0	645.0	303.8	3,758	152	13	14
92	Muratura	-	28.0	450.0	132.5	225	416	22	18
95	Muratura	-	28.0	627.5	127.5	3,136	416	110	15
93	Muratura	-	28.0	1,275.0	130.0	1,088	418	105	112
94	Muratura	-	28.0	1,097.5	130.0	2,274	418	109	112

Parete: 8

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
21	47,029	-48,471	0	0
23	47,029	-47,841	0	0
22	47,029	-48,471	350	1
24	47,029	-47,841	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	1		Altezza [cm]		Baricentro Z [cm]		Nodo sotto
98	Muratura	-	28.0	205.0	225.0	103	172	21	22
99	Muratura	-	28.0	345.0	225.0	458	172	23	24

Macroelementi Fasce

N.	Materiale	Rinforzo	1		Altezza [cm]		Baricentro Z [cm]	l	Nodo destro
96	Muratura	-	28.0	80.0	110.0	245	55	21	23
97	Muratura	-	28.0	80.0	140.0	245	280	22	24

Parete: 9

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
25	46,579	-49,701	0	0
32	46,579	-49,250	0	0
16	46,579	-48,471	0	0
28	46,579	-47,841	0	0
26	46,579	-49,701	350	1
33	46,579	-49,250	350	1
17	46,579	-48,471	350	1
29	46,579	-47,841	350	1
27	46,579	-49,701	480	2

Ī	18	46,579	-48,471	480	2.
- 1	- 0	.0,0,0	.0, . , .	.00	_

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
113	615	480	2

Macroelementi Maschi

N.	Materiale	Rinforzo	_ 1 _		Altezza [cm]	Baricentro X [cm]	Baricentro Z [cm]		Nodo sotto
102	Muratura	-	28.0	655.0	235.0	923	118	16	17
101	Muratura	-	28.0	34.6	303.8	468	152	32	33
103	Muratura	-	28.0	500.0	303.8	1,610	152	28	29
105	Muratura	-	28.0	779.6	117.5	840	411	16	113
104	Muratura	-	28.0	450.4	127.5	225	416	32	27

Macroelementi Fasce

N.	Materiale				Altezza [cm]		Baricentro Z [cm]		Nodo destro
						[cm]			
100	Muratura	-	28.0	110.0	115.0	1,305	293	17	29

Parete: 10

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
30	45,949	-49,250	0	0
32	46,579	-49,250	0	0
31	45,949	-49,250	350	1
33	46,579	-49,250	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
114	315	0	0
115	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	. 1		Altezza [cm]	T 7	Baricentro Z		Nodo sotto
			[cm]	[cm]		[cm]	[cm]	sopra	Solio
106	Muratura	-	28.0	630.0	350.0	315	175	114	115

Parete: 11

Nodi 3D

NT 1		37.5 3	7.5 1	т ' 11
Nodo	X [cm]	Y [cm]	Z [cm]	Livello
34	45,949	-49,701	0	0
25	46,579	-49,701	0	0
49	46,741	-49,701	0	0
41	49,579	-49,701	0	0
36	50,029	-49,701	0	0
35	45,949	-49,701	350	1
26	46,579	-49,701	350	1
50	46,741	-49,701	350	1
42	49,579	-49,701	350	1
37	50,029	-49,701	350	1

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

27	46,579	-49,701	480	2
38	50,029	-49,701	480	2

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
116	1,263	0	0
118	2,028	0	0
120	2,793	0	0
122	3,308	0	0
117	1,263	350	1
119	2,028	350	1
121	2,793	350	1
123	3,308	350	1
124	2,355	480	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore [cm]	Base [cm]	Altezza [cm]	Baricentro X [cm]	Baricentro Z [cm]	Nodo sopra	Nodo sotto
108	Muratura	-	28.0	65.0	235.0	793	118	49	50
109	Muratura	-	28.0	655.0	235.0	1,263	118	116	117
110	Muratura	-	28.0	655.0	235.0	2,028	118	118	119
111	Muratura	-	28.0	655.0	235.0	2,793	118	120	121
112	Muratura	-	28.0	155.0	235.0	3,308	118	122	123
107	Muratura	-	28.0	650.0	303.8	325	152	25	26
113	Muratura	-	28.0	135.0	303.8	3,563	152	41	42
116	Muratura	-	28.0	1,275.0	117.5	2,992	411	120	124
114	Muratura	-	28.0	632.5	140.0	946	420	117	27
115	Muratura	-	28.0	1,092.5	122.5	1,809	421	119	124
117	Muratura	-	28.0	450.0	122.5	3,855	421	42	38

Parete: 12

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
39	49,579	-50,331	0	0
41	49,579	-49,701	0	0
40	49,579	-50,331	350	1
42	49,579	-49,701	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
127	168	0	0
125	335	0	0
128	168	350	1
126	335	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	1		Altezza [cm]		Baricentro Z [cm]		Nodo sotto
			. ,	. ,		[cm]	. ,	1	
118	Muratura	-	28.0	335.0	350.0	168	175	127	128

Parete: 13

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
43	50,029	-48,918	0	0
45	50,659	-48,918	0	0
44	50,029	-48,918	350	1
46	50,659	-48,918	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
129	315	0	0
130	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	_ 1 _		Altezza [cm]		Baricentro Z		Nodo sotto
				. ,		[cm]	. ,	1	
119	Muratura	-	28.0	630.0	350.0	315	175	129	130

Parete: 14

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
47	46,741	-50,331	0	0
49	46,741	-49,701	0	0
48	46,741	-50,331	350	1
50	46,741	-49,701	350	1

Nodi 2D

Nodo	X locale [cm]	Z [cm]	Livello
131	315	0	0
132	315	350	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro Z	Nodo	Nodo
			[cm]	[cm]	[cm]	X	[cm]	sopra	sotto
						[cm]			
120	Muratura	-	30.0	630.0	350.0	315	175	131	132

(*) Elementi di copertura

Analisi statica

Metodo di analisi

La modellazione dell'edificio viene realizzata mediante l'inserimento di pareti che vengono discretizzate in macroelementi, rappresentativi di maschi murari e fasce di piano deformabili; i nodi rigidi sono indicati nelle porzioni di muratura che tipicamente sono meno soggette al danneggiamento sismico. Solitamente i maschi e le fasce sono contigui alle aperture, i nodi rigidi rappresentano elementi di collegamento tra maschi e fasce. La concezione matematica che si nasconde nell'impiego di tale elemento, permette di riconoscere il meccanismo di danno, a taglio nella sua parte centrale o a pressoflessione sui bordi dell'elemento in modo da percepire la dinamica del danneggiamento così come si presenta effettivamente nella realtà.

I nodi del modello, sono nodi tridimensionali a 5 gradi di libertà (le tre componenti di spostamento nel sistema di riferimento globale e le rotazioni intorno agli assi X e Y) o nodi bidimensionali a 3 gradi di libertà (due traslazioni e la rotazione nel piano della parete). Quelli tridimensionali vengono usati per permettere il trasferimento delle azioni, da un primo muro a un secondo disposto trasversalmente rispetto al primo. I nodi di tipo bidimensionale hanno gradi di libertà nel solo piano della parete permettendo il trasferimento degli stati di sollecitazione tra i vari punti della parete.

Gli orizzontamenti, sono modellati con elementi solaio a tre nodi connessi ai nodi tridimensionali, sono caricabili perpendicolarmente al loro piano dai carichi accidentali e permanenti;

Combinazione delle azioni

Carico Statico:

La verifica allo stato limite ultimo per carichi statici viene condotta con la seguente combinazione dei carichi.

$$\gamma_{G1}G_{k1} + \gamma_{G2}G_{k2} + \gamma_{Q}\Psi_{0}Q_{k}$$

dove:

E azione sismica per lo stato limite in esame;

 $\begin{array}{ll} G_{k1} & \text{peso proprio di tutti gli elementi strutturali;} \\ G_{k2} & \text{peso proprio di tutti gli elementi non strutturali;} \\ Q_{Ki} & \text{valore caratteristico della azione variabile;} \end{array}$

 Ψ_2 coefficiente di combinazione;

 Ψ_0 coefficiente di combinazione per i carichi variabili

 γ_{G1} ; γ_{G2} ; γ_{Q} : coefficienti parziali di sicurezza

I valori dei vari coefficienti sono scelti in base alla destinazione d'uso dei vari solai secondo quanto indicato nella norma. [Norme Tecniche 2018 Tabella 2.5.1].

Verifiche

Le verifiche statiche eseguite sulla struttura in questione sono le seguenti:

Snellezza della muratura

La verifica di snellezza è eseguita in accordo con quanto riportato al punto 4.5.4. delle NTC 2018.

Si definisce snellezza di una muratura il rapporto h₀/t in cui:

 h_0 : lunghezza libera di inflessione del muro pari a $\rho \cdot h$;

t: spessore del muro.

h: l'altezza interna di piano;

ρ: il fattore laterale di vincolo.

La verifica di snellezza risulta soddisfatta se risulta verificata la seguente:

 $h_0/t < 20$

Eccentricità dei carichi

La verifica di snellezza è eseguita in accordo con quanto riportato al punto 4.5.6.2. delle NTC 2018.

Tale verifica risulta soddisfatta qualora risultino verificate le seguenti condizioni:

 $e_1/t \le 0.33$

 $e_2/t \le 0.33$

in cui:

t: spessore del muro

$$e_1 = |e_s| + |e_a|$$
 ; $e_2 = \frac{e_1}{2} + |e_v|$

es: eccentricità totale dei carichi verticali

e_a: h/200

 e_v : eccentricità dovuta al vento $e_v = M_v / N$

Verifica a carichi verticali

La verifica di snellezza è eseguita in accordo con quanto riportato al punto 4.5.6.2. delle NTC 2018.

Tale verifica risulta soddisfatta qualora risulti verificata la seguente:

 $N_d \leq N_r$

in cui:

N_d: carico verticale agente

 N_r : carico verticale resistente; $N_r = \phi f_d A$

A: area della sezione orizzontale del muro al netto delle aperture;

f_d: resistenza di calcolo della muratura;

φ: coefficiente di riduzione della resistenza del muro

Queste verifiche sono state eseguite in ogni maschio murario della struttura, nelle tre sezioni principali (inferiore, centrale, superiore).

I valori dello sforzo normale resistente saranno calcolabili solamente se le verifiche di snellezza ed eccentricità dei carichi risultano soddisfatte. Riportiamo nel seguito i dettagli di verifica per le singole pareti.

Parete: 1

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
1		28	12.286	0.061	0.061	0.061	Sì

Superiore Centrale Inferiore

N	A aschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
0	,													o
1		14,476	0.611	159,191	0.091	21,700	0.611	159,191	0.136	28,923	0.611	159,191	0.182	Sì

Parete: 2

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
10	344	28	12.286	0.061	0.061	0.061	Sì
11	344	28	12.286	0.166	0.099	0.260	Sì
12	344	28	12.286	0.177	0.099	0.227	Sì
13	344	28	12.286	0.199	0.101	0.206	Sì
14	344	28	12.286	0.189	0.100	0.215	Sì
15	344	28	12.286	0.184	0.099	0.214	Sì
16	344	28	12.286	0.185	0.098	0.210	Sì
17	344	28	12.286	0.160	0.094	0.238	Sì

Superiore Inferiore Centrale Maschi Nd F Nd/Nr F Nr Nd/Nr Verificat Nr Nd/Nr Nd Nr Nd 5,100 12,323 19,547 0.611 Sì 10 0.611 159,191 0.032 0.611 159,191 0.077 159,191 0.123 11 3,290 0.520 29,706 0.110 4,771 0.520 29,706 0.161 6,252 0.392 22,380 0.279 Sì 12 4,446 0.271 17,367 0.256 5,411 0.521 33,394 0.162 6,376 0.371 23,753 0.268 Sì 2,938 Sì 13 2,860 0.312 3,867 0.740 0.516 6,402 0.459 3,017 0.327 4,053 0.744 14 1,816 0.294 3,641 0.499 2,003 0.518 6,419 0.312 2,189 0.346 4,290 0.510 Sì 15 Sì 3,541 0.296 5,500 0.644 3,983 0.521 9,693 0.411 4,426 0.357 6,633 0.667 5,007 Sì 16 4,550 0.305 5,860 0.7770.522 10,037 0.499 5,464 0.354 6,810 0.80217 6,845 0.248 25,734 0.266 9,535 0.530 55,000 0.173 12,225 0.403 41,798 0.292 Sì

Parete: 3

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
34	344	28	12.286	0.061	0.061	0.061	Sì
35	344	28	12.286	0.061	0.061	0.061	Sì
36	344	28	12.286	0.077	0.061	0.081	Sì
37	344	28	12.286	0.120	0.061	0.123	Sì
38	344	28	12.286	0.126	0.064	0.130	Sì
39	344	28	12.286	0.132	0.066	0.134	Sì
40	344	28	12.286	0.133	0.067	0.135	Sì
41	344	28	12.286	0.119	0.062	0.128	Sì
42	344	28	12.286	0.119	0.062	0.131	Sì
43	344	28	12.286	0.120	0.062	0.132	Sì
44	344	28	12.286	0.120	0.063	0.132	Sì
45	344	28	12.286	0.114	0.061	0.133	Sì

Superiore Centrale Inferiore

Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
34	13,157	0.611	132,659	0.099	16,855	0.611	132,659	0.127	20,552	0.611	132,659	0.155	Sì
35	1,583	0.611	6,317	0.251	1,759	0.611	6,317	0.278	1,935	0.611	6,317	0.306	Sì
36	1,262	0.558	5,763	0.219	1,438	0.611	6,317	0.228	1,614	0.570	5,884	0.274	Sì
37	3,138	0.475	5,887	0.533	3,217	0.611	7,581	0.424	3,295	0.481	5,957	0.553	Sì
38	3,128	0.462	5,725	0.546	3,207	0.604	7,493	0.428	3,285	0.468	5,802	0.566	Sì

39	4,028	0.453	5,610	0.718	4,107	0.597	7,406	0.555	4,186	0.458	5,675	0.738	Sì
40	5,525	0.451	5,589	0.988	5,603	0.596	7,384	0.759	5,682	0.455	5,688	0.998	Sì
41	10,911	0.465	26,884	0.406	11,782	0.611	35,354	0.333	12,654	0.482	27,903	0.453	Sì
42	22,400	0.459	45,473	0.493	24,759	0.609	60,400	0.410	27,118	0.482	47,787	0.567	Sì
43	22,872	0.458	45,422	0.504	25,231	0.609	60,349	0.418	27,589	0.481	47,705	0.578	Sì
44	23,458	0.458	45,425	0.516	25,817	0.608	60,331	0.428	28,175	0.481	47,660	0.591	Sì
45	13,288	0.455	42,323	0.314	15,697	0.611	56,854	0.276	18,107	0.492	45,724	0.396	Sì

Parete: 4

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
50	344	28	12.286	0.061	0.061	0.061	Sì
51	344	28	12.286	0.162	0.095	0.236	Sì
52	344	28	12.286	0.179	0.098	0.217	Sì
53	344	28	12.286	0.181	0.100	0.226	Sì
54	344	28	12.286	0.167	0.105	0.316	Sì

S	Superiore			Ce	entrale			Infe	riore				
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
50	6,188	0.611	159,191	0.039	13,412	0.611	159,191	0.084	20,636	0.611	159,191	0.130	Sì
51	4,477	0.251	16,066	0.279	6,133	0.529	33,792	0.181	7,789	0.400	25,523	0.305	Sì
52	6,651	0.290	20,380	0.326	7,709	0.523	36,722	0.210	8,767	0.365	25,645	0.342	Sì
53	4,523	0.273	15,234	0.297	5,363	0.519	28,938	0.185	6,204	0.362	20,183	0.307	Sì
54	1,816	0.509	25,216	0.072	3,101	0.509	25,216	0.123	4,386	0.390	19,353	0.227	Sì

Parete: 5

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
69	344	28	12.286	0.114	0.061	0.134	Sì
70	344	28	12.286	0.111	0.061	0.128	Sì
71	344	28	12.286	0.119	0.062	0.131	Sì
72	344	28	12.286	0.119	0.062	0.131	Sì
73	344	28	12.286	0.119	0.062	0.128	Sì
74	344	28	12.286	0.134	0.067	0.136	Sì
75	344	28	12.286	0.132	0.067	0.135	Sì
76	344	28	12.286	0.126	0.064	0.129	Sì
77	344	28	12.286	0.122	0.061	0.124	Sì
78	344	28	12.286	0.078	0.061	0.081	Sì

S	uperiore			Ce	entrale			Infe	riore				
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
69	12,752	0.453	42,146	0.303	15,162	0.611	56,854	0.267	17,571	0.492	45,699	0.385	Sì
70	13,864	0.464	46,039	0.301	16,223	0.611	60,644	0.268	18,581	0.497	49,272	0.377	Sì
71	22,918	0.458	45,443	0.504	25,277	0.609	60,361	0.419	27,635	0.481	47,719	0.579	Sì
72	22,413	0.459	45,474	0.493	24,772	0.609	60,400	0.410	27,130	0.482	47,787	0.568	Sì
73	10,853	0.465	26,881	0.404	11,724	0.611	35,354	0.332	12,596	0.482	27,905	0.451	Sì
74	5,385	0.450	5,575	0.966	5,463	0.595	7,375	0.741	5,542	0.454	5,626	0.985	Sì
75	3,891	0.452	5,604	0.694	3,970	0.597	7,402	0.536	4,048	0.458	5,672	0.714	Sì
76	3,259	0.463	5,746	0.567	3,338	0.606	7,507	0.445	3,416	0.469	5,819	0.587	Sì
77	4,096	0.473	5,859	0.699	4,175	0.611	7,581	0.551	4,254	0.477	5,914	0.719	Sì

78	2,025	0.557	5,758	0.352	2,202	0.611	6,317	0.349	2,378	0.565	5,841	0.407
Parete : 6	6											
Maschi		t		ho/t		e1/t Inf	eriore	e2/t Central	e e1/t	Superiore	Verificat	О
o	[cm]	[-	cm]									
80	344	2	28	12.2	86	0.090		0.061	0.10	7	Sì	
81	344	2	28	12.2	86	0.078		0.061	0.08	30	Sì	
82	344	2	28	12.2	86	0.085		0.061	0.09)4	Sì	

0.023

0.063

0.023

0.063

0.023

0.063

Sì

Sì

Superiore Centrale Inferiore Maschi Nd Nd Nd/Nr Nr Nd/Nr Nr Nd/Nr Nd Nr Verificat 80 34,226 0.506 212,727 0.161 44,361 0.611 257,296 0.172 54,495 0.538 226,354 0.241 Sì 79,216 0.560 158,649 0.499 84,489 0.611 173,088 0.488 89,763 0.566 160,345 0.560 Sì 82 2,481 Sì 2,105 0.531 8,273 0.254 0.611 9,531 0.260 2,856 0.547 8,526 0.335 83 74,990 0.900 291,002 0.258 78,387 0.900 291,002 0.269 81,785 0.900 291,002 0.281 Sì 56,224 0.603 111,366 0.505 58,056 0.603 111,366 0.521 59,887 0.603 111,366 0.538 Sì

Parete:	7						
Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
0	[cm]	[cm]					
85	344	28	12.286	0.077	0.061	0.082	Sì
86	344	28	12.286	0.083	0.061	0.087	Sì
87	344	28	12.286	0.091	0.061	0.099	Sì
88	344	28	12.286	0.105	0.061	0.122	Sì
89	344	28	12.286	0.121	0.066	0.149	Sì
90	344	28	12.286	0.141	0.080	0.188	Sì
91	344	28	12.286	0.083	0.061	0.111	Sì
92	130	28	4.643	0.024	0.023	0.024	Sì
93	130	28	4.643	0.027	0.023	0.029	Sì
94	130	28	4.643	0.027	0.023	0.030	Sì
95	350	28	12.500	0.067	0.063	0.067	Sì

S	uperiore			Се	ntrale			Infe	riore				_
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													0
85	13,050	0.554	46,965	0.278	15,090	0.611	51,800	0.291	17,130	0.568	48,117	0.356	Sì
86	5,748	0.543	16,836	0.341	6,325	0.611	18,951	0.334	6,903	0.552	17,105	0.404	Sì
87	39,385	0.520	143,989	0.274	44,543	0.611	169,298	0.263	49,701	0.535	148,159	0.335	Sì
88	26,309	0.477	129,182	0.204	31,351	0.611	165,508	0.189	36,394	0.509	137,834	0.264	Sì
89	21,116	0.425	115,038	0.184	26,159	0.599	162,106	0.161	31,201	0.479	129,702	0.241	Sì
90	1,659	0.347	9,322	0.178	2,159	0.561	15,073	0.143	2,660	0.440	11,831	0.225	Sì
91	9,806	0.498	132,655	0.074	16,225	0.611	162,981	0.100	22,644	0.552	147,114	0.154	Sì
92	19,754	0.897	166,865	0.118	19,754	0.900	167,306	0.118	21,707	0.898	166,904	0.130	Sì
93	26,155	0.882	464,515	0.056	31,585	0.900	474,035	0.067	37,015	0.887	467,308	0.079	Sì
94	10,694	0.879	398,513	0.027	15,368	0.900	408,042	0.038	20,042	0.889	402,957	0.050	Sì
95	41,943	0.590	152,878	0.274	44,564	0.603	156,231	0.285	47,185	0.591	153,251	0.308	Sì

Parete: 8

28

28

4.643

12.500

83

84

130

350

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
98	344	28	12.286	0.087	0.061	0.093	Sì
99	344	28	12.286	0.214	0.121	0.280	Sì

S	uperiore			Ce	ntrale Inferiore								
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
98	14,403	0.532	45,092	0.319	15,914	0.611	51,800	0.307	17,425	0.543	45,978	0.379	Sì
99	11,788	0.479	68,244	0.172	14,331	0.479	68,244	0.210	16,874	0.295	42,103	0.401	Sì

_					
p	ar	-01	t_	•	(

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
101	344	28	12.286	0.127	0.078	0.236	Sì
102	344	28	12.286	0.123	0.070	0.173	Sì
103	344	28	12.286	0.085	0.061	0.101	Sì
104	350	28	12.500	0.063	0.063	0.063	Sì
105	350	28	12.500	0.063	0.063	0.063	Sì

S	Superiore			Centrale				Inferiore					
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
101	415	0.252	3,606	0.115	759	0.564	8,064	0.094	1,104	0.467	6,669	0.165	Sì
102	12,606	0.379	102,520	0.123	17,649	0.587	158,747	0.111	22,691	0.474	128,315	0.177	Sì
103	14,020	0.517	106,782	0.131	18,996	0.611	126,342	0.150	23,972	0.548	113,285	0.212	Sì
104	55,688	0.603	112,137	0.497	57,569	0.603	112,137	0.513	59,450	0.603	112,137	0.530	Sì
105	98 673	0.603	194 099	0.508	101 674	0.603	194 099	0.524	104 675	0.603	194 099	0.539	Sì

Parete: 10

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
106	344	28	12.286	0.117	0.073	0.235	Sì

Superiore Centrale					Inferiore								
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
106	6,908	0.255	66,310	0.104	14,131	0.579	150,758	0.094	21,355	0.485	126,258	0.169	Sì

Parete: 11

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]				_	
107	344	28	12.286	0.072	0.061	0.082	Sì
108	344	28	12.286	0.093	0.061	0.106	Sì
109	344	28	12.286	0.092	0.061	0.105	Sì
110	344	28	12.286	0.108	0.061	0.143	Sì
111	344	28	12.286	0.102	0.061	0.117	Sì
112	344	28	12.286	0.088	0.061	0.092	Sì
113	344	28	12.286	0.082	0.061	0.086	Sì
114	130	28	4.643	0.028	0.023	0.028	Sì
115	130	28	4.643	0.026	0.023	0.032	Sì
116	350	28	12.500	0.068	0.063	0.069	Sì

11	7		28	4.643	0.028	0.023		Sì
	,	100			0.020	0.020	0.0_0	~ 1

S	Superiore			Centrale				Inferiore					
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
107	14,846	0.555	149,040	0.100	21,315	0.611	164,244	0.130	27,784	0.581	156,120	0.178	Sì
108	2,472	0.507	13,609	0.182	2,973	0.611	16,424	0.181	3,473	0.531	14,274	0.243	Sì
109	22,099	0.508	137,526	0.161	27,141	0.611	165,508	0.164	32,184	0.535	144,695	0.222	Sì
110	13,249	0.437	118,198	0.112	18,292	0.611	165,508	0.111	23,334	0.504	136,440	0.171	Sì
111	28,048	0.487	131,725	0.213	33,090	0.611	165,508	0.200	38,133	0.515	139,310	0.274	Sì
112	15,514	0.534	34,195	0.454	16,707	0.611	39,166	0.427	17,900	0.542	34,697	0.516	Sì
113	14,157	0.545	30,406	0.466	15,501	0.611	34,112	0.454	16,844	0.554	30,881	0.545	Sì
114	30,523	0.884	230,984	0.132	32,690	0.900	235,158	0.139	35,591	0.886	231,578	0.154	Sì
115	4,241	0.873	394,205	0.011	8,625	0.900	406,183	0.021	13,010	0.891	402,278	0.032	Sì
116	31,490	0.584	307,584	0.102	36,398	0.603	317,441	0.115	41,306	0.588	309,927	0.133	Sì
117	27,195	0.884	164,364	0.165	29,001	0.900	167,306	0.173	30,806	0.886	164,709	0.187	Sì

Parete: 12

Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]					
118	344	28	12.286	0.207	0.126	0.330	Sì

S	uperiore			Cei	ntrale			Inter	riore				
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
118	8,363	0.468	64,812	0.129	12,204	0.468	64,812	0.188	16,046	0.311	42,996	0.373	Sì

Parete: 13

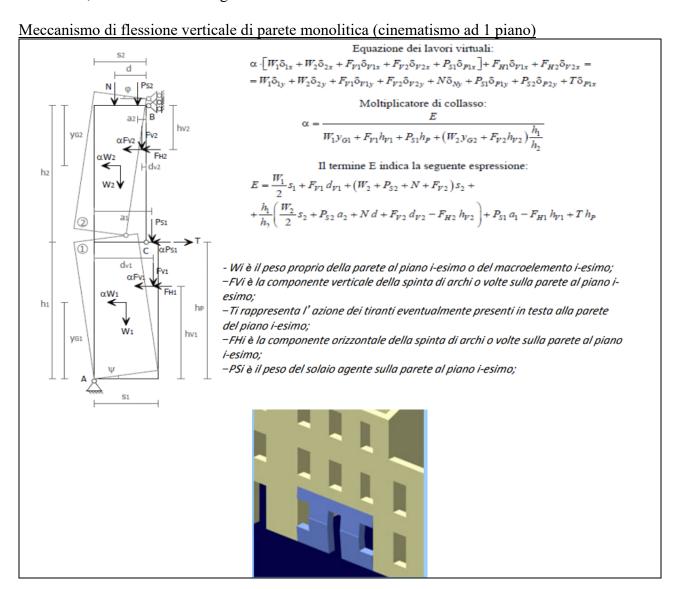
Maschi	ho	t	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[cm]				_	
119	344	28	12.286	0.094	0.061	0.129	Sì

Superiore				Centrale			Inferiore						
Maschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o													o
119	14,019	0.464	120,733	0.116	21,242	0.611	159,191	0.133	28,466	0.529	137,760	0.207	Sì

Parete: 14

Maso	chi ho	t	;	ho/t	e1/t Inferiore	e2/t Centrale	e1/t Superiore	Verificato
o	[cm]	[[cm]					
120	344	3	30	11.467	0.057	0.057	0.057	Sì

	Superiore				Centrale				Inferiore					
Ma	aschi	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Nd	F	Nr	Nd/Nr	Verificat
o														o
12	0	19,590	0.646	180,248	0.109	27,329	0.646	180,248	0.152	35,069	0.646	180,248	0.195	Sì


(*) Elementi di copertura

ANALISI LOCALE - STATO DI PROGETTO

Meccanismo di flessione verticale di parete monolitica

Il meccanismo di espulsione si verifica quando una parete è vincolata agli estremi e libera al centro, ad esempio in presenza di un cordolo di sommità oppure di tiranti metallici o di ancoraggi delle testate delle travi alla parete e in assenza di collegamento ai solai intermedi. Si può anche verificare per la porzione di parete compresa tra due solai ben vincolati ad essa. Può interessare uno o più piani dell'edificio e può anche verificarsi per uno solo dei paramenti nel caso di muro a doppia parete soprattutto se il paramento esterno è efficacemente collegato ai solai intermedi.

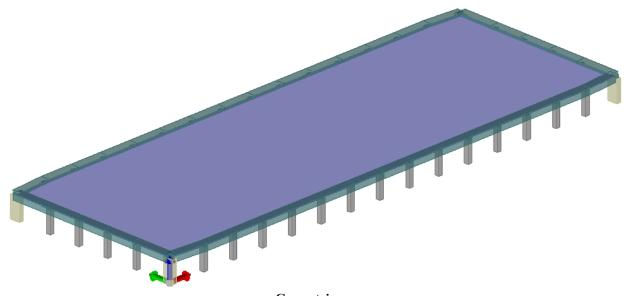
La rottura interna di una parete intirantata avviene in seguito alla formazione di una cerniera intermedia, come mostrato in figura.

PARETE N.1 _ PT _ ESTERNA

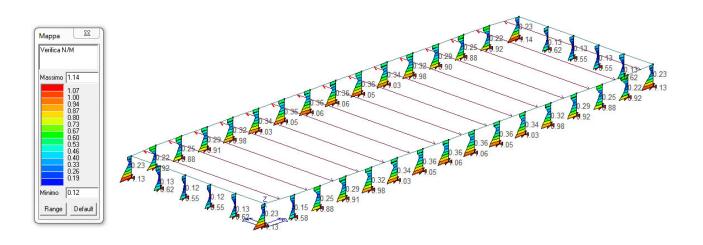
	CARATTERIZZAZIONE GEOMETRICA DELLA PARETE									
DATI	Spessore della parete S [m]	Altezza della parete (interpiano) h [m]	Braccio orizzontale del carico trasmesso dai piani superiori rispetto al carrello in B d [m]	Braccio orizzontale dell'azione di archi o volte rispetto al carrello in B d _V [m]	Braccio verticale dell'azione di archi o volte rispetto al carrello in B h _V [m]	Braccio orizzontale del carico tras messo dal solaio rispetto al carrello in B a [m]				
INIZIALI	0.28	3.00	0.14	0.00	0.00	0.10				
			AZION	NI SUI MACROELEI	MENTI					
	Peso specifico della muratura γ _i [kN/m³]	Peso proprio della parete W [kN]	Carico trasmesso dal solaio P _S [kN]	Carico trasmesso alla parete dai piani superiori N [kN]	Componente verticale della spinta di archi o volte F _V [kN]	Componente orizzontale della spinta di archi o volte F _H [kN]				
	18.0	15.1	9.8		-					
	18.0	15.1	9.8	0.0	0.0	0.0				
DATI DI CALCOLO	Valore minimo assunto da $lpha_0$	Valore di h_1 per α_0 minimo [m]	Valore assunto da α_0 per $h_2 = h_V$							
	0.580	2.16	N.C.							
				.						
MOLTIPLI- CATORE α_0	Valore minimo assunto da $lpha_0$	Quota di formazione della cerniera rispetto alla base della parete h ₁ [m]	Fattore di Confidenza FC	Massa partecipante M*	Frazione massa partecipante e*	Accelerazione spettrale a ₀ * [m/sec ²]				
	0.580	2.16	1.20	1.541	1.000	4.741				

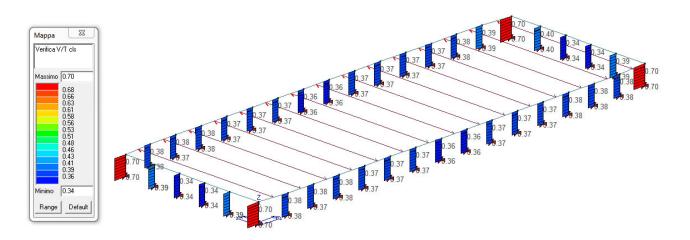
CALCOLO DELLE PGA PER LA VERIFICA DELLO STATO LIMITE DI SALVAGUARDIA DELLA VITA CIRCOLARE N. 617 DEL 02-02-2009 - ISTRUZIONI PER L'APPLICAZIONE DELLE NTC 14-01-2008									
	Fattore di struttura q	2.00							
	Coefficiente di amplificazione topografica S_T	1.00							
	Categoria suolo di fondazione	С							
	PGA di riferimento $a_q(P_{V_R})$ [g]	0.211							
	Fattore di amplificazione massima dello spettro F _O	2.417							
	Periodo di inizio del tratto a velocità costante dello spettro T _C * [sec]	0.304							
	Fattore di smorzamento η	1.000							
	Quota di base del macroelemento rispetto alla fondazione [m]	0.000							
	Alte <i>zz</i> a della struttura H [m]	6.50							
PARAMETRI	Coefficiente di amplificazione stratigrafica S_S	1.394							
DI CALCOLO	Coefficiente C _C	1.555							
	Fattore di amplificazione locale del suolo di fondazione S	1.394							
	Numero di piani dell'edificio N	2							
	Coefficiente di partecipazione modale γ	1.200							
	Primo periodo di vibrazione dell'intera struttura T ₁ [sec]	0.204							

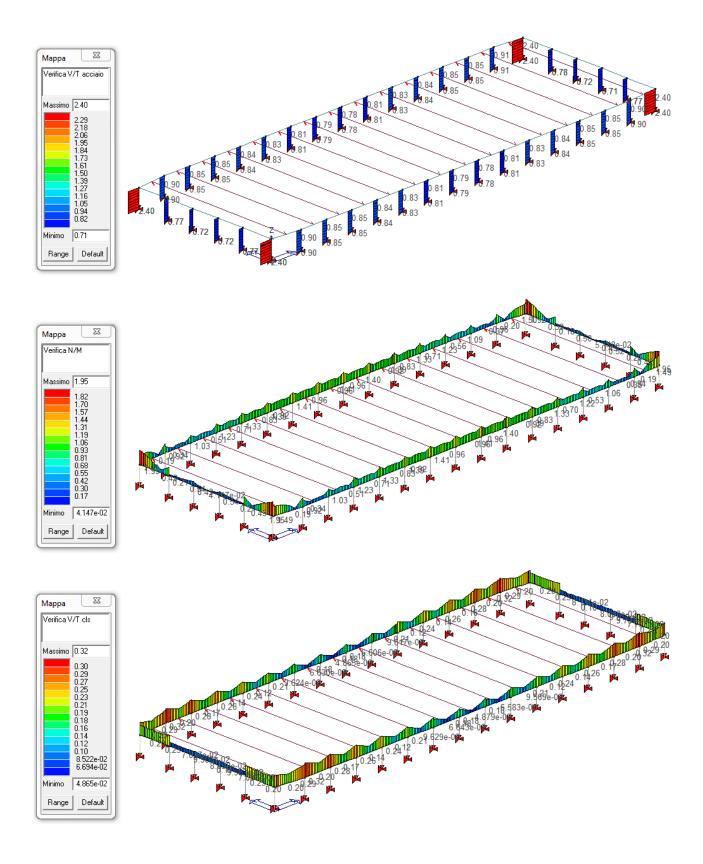
Baricentro delle linee di vincolo Z[m]	ψ(Z) = Z/H	a _{g(SLV)} (C8A.4.9)	S _e (T ₁) (C8A.4.10)
1.500	0.231	0.693	-

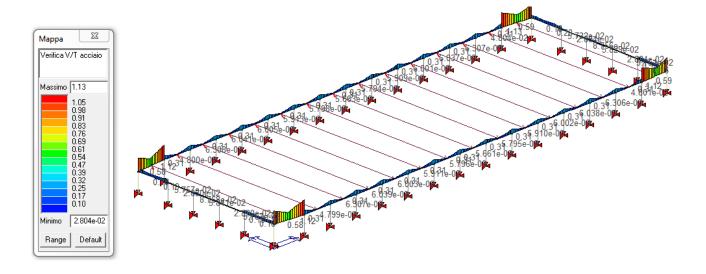

PARETE N.2 PT INTERNA

PAREIEN.	Z_FI_INIERI	17.8								
	CARATTERIZZAZIONE GEOMETRICA DELLA PARETE									
DATI	Spessore della parete S [m]	Altezza della parete (interpiano) h [m]	Braccio orizzontale del carico trasmesso dai piani superiori rispetto al carrello in B d [m]	Braccio orizzontale dell'azione di archi o volte ris petto al carrello in B d _V [m]	Braccio verticale dell'azione di archi o volte rispetto al carrello in B h _V [m]	Braccio orizzontale del carico trasmesso dal solaio rispetto al carrello in B a [m]				
INIZIALI	0.28	3.50	0.14	0.00	0.00	0.10				
		AZIONI SUI MACROELEMENTI								
	Peso specifico della muratura γ _i [kN/m³]	Peso proprio della parete W [kN]	Carico trasmesso dal solaio P _S [kN]	Carico trasmesso alla parete dai piani superiori N [kN]	Componente verticale della spinta di archi o volte F _V [kN]	Componente orizzontale della spinta di archi o volte F _H [kN]				
	18.0	17.6	4.8	45.2	0.0	0.0				


DATI DI CALCOLO	Valore minimo assunto da $lpha_0$	Valore di h_1 per α_0 minimo [m]	Valore assunto da α_0 per $h_2 = h_V$			
	1.570	2.17	N.C.			
MOLTIPLI- CATORE α_0	Valore minimo assunto da $lpha_0$	Quota di formazione della cerniera rispetto alla base della parete h ₁ [m]	Fattore di Confidenza FC	Massa partecipante M *	Frazione massa partecipante e*	Accelerazione spettrale a ₀ * [m/sec ²]
	1.570	2.17	1.20	1.798	1.000	12.838


				-	GUARDIA DELLA V DELLE NTC 14-01-2	
		Fattore di	struttura q		2.00	
	Соє	efficiente di amplific	cazione topografica	a S _T	1.00	
		Categoria suole	o di fondazione		С	
		0.211				
	Fattore	2.417				
	Periodo di inizi	o del tratto a veloci		pettro T _C * [sec]	0.304	
	0 1 11	Fattore di sm			1.000	
	Quota di bas	0.000				
		6.50				
PARAMETRI	Coe	1.394				
DI CALCOLO	Cottoro di	Coefficie amplificazione loca		dariana C	1.555	
	rallore di a	1.394				
ŀ	C	1.200				
	Primo pe	0.204				
	Fillio pe	0.204				
	Baricentro delle linee di vincolo Z[m]	$\psi(Z) = Z/H$	a _{g(SLV)} (C8A.4.9)	S _e (T ₁) (C8A.4.10)		
	1.750	0.269	1.878	-		
					1	
PGA-SLV	a _{g(SLV)} min(C8A.4.9; C8A.4.10) 1.878					


COPERTURA ALTA IN C.A. - TORRETTA STATO DI FATTO



Geometria

CARATTERISTICHE MATERIALI UTILIZZATI

LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

T/	
Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo se
	diverso da quello globale della struttura)
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo se
	diverso da quello globale della struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari
Massima compressione	Massima tensione di compressione per aste non lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
3	muratura		
		Muratura consolidata	Muratura per la quale si prevedono interventi di rinforzo"
		Incremento resistenza	Incremento conseguito in termini di resistenza
		Incremento rigidezza	Incremento conseguito in termini di rigidezza
		Resistenza f	Valore della resistenza a compressione
		Resistenza fv0	Valore della resistenza a taglio in assenza di tensioni normali
		Resistenza fh	Valore della resistenza a compressione orizzontale
		Resistenza fb	Valore della resistenza a compressione dei blocchi
		Resistenza fbh	Valore della resistenza a compressione dei blocchi in direzione orizzontale
		Resistenza fv0h	Valore della resistenza a taglio in assenza di tensioni normali per le travi
		Resistenza ft	Valore della resistenza a trazione per fessurazione diagonale

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

	Resistenza fylim	Valore della massima resistenza a taglio
	Resistenza fbt	Valore della resistenza a trazione dei blocchi
	Coefficiente mu	Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4)
	Coefficiente fi	Coefficiente d'ingranamento utilizzato per la resistenza a taglio
	Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
4 legno		
	E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
	Resistenza fc0	Valore della resistenza a compressione parallela
	Resistenza ft0	Valore della resistenza a trazione parallela
	Resistenza fm	Valore della resistenza a flessione
	Resistenza fv	Valore della resistenza a taglio
	Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
	Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
	Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
	Modulo E0,05	Modulo elastico parallelo caratteristico
	Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
2	Calcestruzzo Classe C20/25-Calcestruzzo Classe			3.020e+05	0.20	1.258e+05	2.50e-03	1.00e-05	
	C20/25								
	Fattore di confidenza FC m								1.35
	Fattore di confidenza FC a								1.35
	Resistenza Rc	153.6	250.0						
	Resistenza fctm		22.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetta a filo	NO	NO	NO	NO		
Af inf: da g*L*L /	0.0	0.0	0.0	0.0		
Armatura						
Minima tesa	0.31	0.31	0.31	0.33		
Minima compressa	0.31	0.31	0.31	0.33		
Massima tesa	0.78	0.78	0.78	0.81		
Da sezione	SI	SI	SI	SI		
Usa armatura teorica	NO	NO	NO	NO		
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4300.00		
Tensione fy staffe [daN/cm2]	4500.00	4500.00	4500.00	4300.00		
Tipo acciaio	tipo C	tipo C	tipo C	tipo C		
Coefficiente gamma s	1.15	1.15	1.15	1.15		
Coefficiente gamma c	1.50	1.50	1.50	1.50		
Verifiche con N costante	SI	SI	SI	SI		
Fattore di ridistribuzione	0.0	0.0	0.0	0.0		
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander	Mander	Mander		
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03		
Fattore lambda	1.00	1.00	1.00	1.00		
epsilon max,s	4.000e-02	4.000e-02	4.000e-02	4.000e-02		
epsilon cu2	4.500e-03	4.500e-03	4.500e-03	4.500e-03		
epsilon c2	0.0	0.0	0.0	0.0		
epsilon cy	0.0	0.0	0.0	0.0		
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50	97.50	97.50		
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00		
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00		
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00		
Staffe						
Diametro staffe	0.0	0.0	0.0	6.00		
Passo minimo [cm]	4.00	4.00	4.00	25.00		
Passo massimo [cm]	30.00	30.00	30.00	25.00		
Passo raffittito [cm]	15.00	15.00	15.00	15.00		
Lunghezza zona raffittita [cm]	50.00	50.00	50.00	50.00		
Ctg(Teta) Max	2.50	2.50	2.50	2.50		
Percentuale sagomati	0.0	0.0	0.0	0.0		
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00		

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Adotta scorrimento medio	NO	NO	NO	NO		
Torsione non essenziale inclusa	SI	SI	SI	SI		

Pilastri c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetto armatura	Privilegia lati	Privilegia lati	Privilegia lati	Privilegia lati		
Progetta a filo	NO	NO	NO	SI		
Effetti del 2 ordine	SI	SI	SI	NO		
Beta per 2-2	1.00	1.00	1.00	1.00		
Beta per 3-3	1.00	1.00	1.00	1.00		
Armatura						
Massima tesa	4.00	4.00	4.00	4.00		
Minima tesa	1.00	1.00	1.00	1.00		
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4300.00		
Tensione fy staffe [daN/cm2]	4500.00	4500.00	4500.00	3150.00		
Tipo acciaio	tipo C	tipo C	tipo C	tipo C		
Coefficiente gamma s	1.15	1.15	1.15	1.15		
Coefficiente gamma c	1.50	1.50	1.50	1.50		
Verifiche con N costante	SI	SI	SI	SI		
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander	Mander	Mander		
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03		
Fattore lambda	1.00	1.00	1.00	1.00		
epsilon max,s	4.000e-02	4.000e-02	4.000e-02	4.000e-02		
epsilon cu2	4.500e-03	4.500e-03	4.500e-03	4.500e-03		
epsilon c2	0.0	0.0	0.0	0.0		
epsilon cy	0.0	0.0	0.0	0.0		
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50	97.50	97.50		
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00		
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00		
Staffe						
Diametro staffe	0.0	0.0	0.0	6.00		
Passo minimo [cm]	5.00	5.00	5.00	20.00		
Passo massimo [cm]	25.00	25.00	25.00	20.00		
Passo raffittito [cm]	15.00	15.00	15.00	15.00		
Lunghezza zona raffittita [cm]	45.00	45.00	45.00	45.00		
Ctg(Teta) Max	2.50	2.50	2.50	2.50		
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00		
Massimizza gerarchia	SI	SI	SI	SI		

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Usa tensioni ammissibili	NO	NO	NO	NO		
Af inf: da traliccio	SI	SI	SI	SI		
Consenti armatura a taglio	NO	NO	NO	NO		
Incrementa armatura longitudinale per taglio	SI	SI	SI	SI		
Af inf: da q*L*L /	20.00	20.00	20.00	20.00		
Incremento fascia piena [cm]	5.00	5.00	5.00	5.00		
Armatura						
Minima tesa	0.15	0.15	0.15	0.15		
Massima tesa	3.00	3.00	3.00	3.00		
Minima compressa	0.0	0.0	0.0	0.0		
Af/h [cm]	7.000e-02	7.000e-02	7.000e-02	7.000e-02		
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4500.00		
Tipo acciaio	tipo C	tipo C	tipo C	tipo C		
Coefficiente gamma s	1.15	1.15	1.15	1.15		
Coefficiente gamma c	1.50	1.50	1.50	1.50		
Fattore di ridistribuzione	0.0	0.0	0.0	0.0		
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	85.00	85.00	85.00	85.00		
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00		
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00		
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00		
Verifica freccia						
Infinita	250.00	250.00	250.00	250.00		
Istantanea	500.00	500.00	500.00	500.00		
Fattore viscosità	3.00	3.00	3.00	3.00		
Usa J non fessurato	NO	NO	NO	NO		
Elementi non strutturali						
Tamponatura antiespulsione	NO	NO	NO	NO		
Tamponatura con armatura	NO	NO	NO	NO		
Fattore di struttura/comportamento	2.00	2.00	2.00	2.00		

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Coefficiente gamma m	0.0	0.0	0.0	0.0		
Periodo Ta	0.0	0.0	0.0	0.0		
Altezza pannello	0.0	0.0	0.0	0.0		

EDIFICI ESISTENTI: INTERVENTI DI RINFORZO

LEGENDA TABELLE INTERVENTI DI RINFORZO

Per le verifiche da condurre sugli elementi rinforzati il programma attinge le informazioni da archivi di rinforzi. Gli archivi utilizzati e la modalità di applicazione della specifica tecnica dipendono ovviamente dal tipo e materiale dell'elemento strutturale. In particolare nelle tabelle successive vengono dettagliati:

- I rinforzi FRP per c.a. (implementati secondo il punto "C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI" e "Linee guida per la Progettazione, l'Esecuzione ed il Collaudo di Interventi di Rinforzo di strutture di c.a., c.a.p. e murarie mediante FRP")
- I rinforzi tipo CAM o angolari con calastrelli (implementati secondo il punto C8.7.2.2 INCAMICIATURA IN ACCIAIO)
- I rinforzi FRP per murature (implementati come da "Linee guida per la Progettazione, l'Esecuzione ed il Collaudo di Interventi di Rinforzo di strutture di c.a., c.a.p. e murarie mediante FRP")

Titolo colonna	Descrizione	Nota
Id	Indice nell'archivio	
Sigla FRP per c.a.	Nome nell'archivio o riferimento al prodotto commerciale	
Spess.	Spessore del fibrorinforzo	Strati sovrapposti si modellano assegnando lo spessore totale
Mod. E	Modulo elastico del fibrorinforzo	Elastico lineare fino a rottura
eps r	Tensione caratteristica di rottura	
Direz.	Schema di disposizione delle fibre	Da uniassiale a quadriassiale
Applicaz.	Applicazione	Utilizzato in Tabella 2-1
	tipo A o B	
Espos.	Interna, esterna, ambiente aggressivo	Utilizzato in Tabella 2-3
Fibra	Arammidica, vetro, carbonio,altro	Utilizzato in Tabella 2-3
L fasc.	Larghezza delle fasce	Definizione geometrica della fasciatura, se L.fasc=P fasc. o uno dei 2 è nullo, si ritiene applicata un ricoprimento completo
P fasc.	Passo delle fasce	Definizione geometrica della fasciatura, se L.fasc=P fasc. o uno dei 2 è nullo, si ritiene applicata un ricoprimento completo
R curv.	Raggio di curvatura utilizzato nell'arrotondamento degli spigoli	
Titolo colonna	Descrizione	Nota
Id	Indice nell'archivio	
Sigla CAM	Nome nell'archivio o riferimento al prodotto commerciale	Utilizzato anche per incamiciatura in acciaio con

Titolo colonna	Descrizione	Nota
Id	Indice nell'archivio	
Sigla CAM	Nome nell'archivio o riferimento al prodotto commerciale	Utilizzato anche per incamiciatura in acciaio con profili generici.
Sez.	Angolare utilizzato	Nel caso il profilo non sia presente nell'archivio delle sezioni si riporta "altro"
Α	Area dell'angolare	
L	Lato dell'angolare	
s L	Spessore dell'angolare	
fyk	Tensione caratteristica di snervamento angolare	

s cal.	Spessore dei nastri o calastrelli	
L cal.	Altezza dei nastri o calastrelli	
P cal.	Passo dei nastri o calastrelli	
M nas.	Numero dei nastri	Utilizzato nel caso in cui si utilizzino più nastri sovrapposti
fyk c	Tensione caratteristica di snervamento dei nastri o calastrelli	
ftk c	Tensione caratteristica di rottura dei nastri o calastrelli	
R curv.	Raggio di curvatura utilizzato nell'arrotondamento degli spigoli	

Titolo colonna	Descrizione	Nota
ld	Indice nell'archivio	
Sigla FRP per mur.	Nome nell'archivio o riferimento al prodotto commerciale	
Spess.	Spessore del fibrorinforzo	Strati sovrapposti si modellano sommando gli spessori
Mod. E	Modulo elastico del fibrorinforzo	Elastico lineare fino a rottura
eps r	Tensione caratteristica di rottura	
eps d	Tensione di progetto assegnata	Valore della tensione massima nel fibrorinforzo, nel caso si adottino dispositivi di ancoraggio. Se pari a 0 viene calcolata dal programma automaticamente
Applicaz.	Applicazione	Utilizzato in Tabella 2-1
	tipo A o B	
Espos.	Interna, esterna, ambiente aggressivo	Utilizzato in Tabella 2-3
Fibra	Arammidica, vetro, carbonio,altro	Utilizzato in Tabella 2-3
L fasc. O	Larghezza delle fasce orizzontali	
P fasc. O	Passo delle fasce orizzontali	
L fasc. V	Larghezza delle fasce verticali	
P fasc. V	Passo delle fasce verticali	
A conc.	Area di rinforzo concentrato alle estremità del maschio murario	
Conf.	Fibrorinforzo adottato per conseguire un effetto di confinamento sulla muratura	Utilizzato per elementi Pilastro in muratura
R curv.	Raggio di curvatura utilizzato nell'arrotondamento degli spigoli	

Per i materiali degli elementi in muratura consolidata, in relazione alla Tabella C8.5.II "Coefficienti correttivi massimi dei parametri meccanici (indicati in Tabella C85.I) da applicarsi in presenza di: malta di caratteristiche buone o ottime; giunti sottili; ricorsi o listature; sistematiche connessioni trasversali; iniezione di miscele leganti; intonaco armato; ristillatura armata con connessione dei paramenti. Si riportano le informazioni atte a definire la tecnica di rinforzo adottata e gli eventuali incrementi in termini di rigidezza e resistenza conseguiti.

A seguire vengono dettagliati gli interventi per le strutture in c.a. con la seguente suddivisione tabellare :

- Nodi: con gli interventi applicati in ottemperanza ai punti C8.7.4.2.1 INCAMICIATURA IN C.A.; C8.7.4.2.2 INCAMICIATURA IN ACCIAIO; C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
- Pilastri: con gli interventi applicati in ottemperanza ai punti C8.7.4.2.1 INCAMICIATURA IN C.A.; C8.7.4.2.2 INCAMICIATURA IN ACCIAIO; C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
- Travi: con gli interventi applicati in ottemperanza ai punti C8.7.4.2.1 INCAMICIATURA IN C.A.; C8.7.4.2.2 INCAMICIATURA IN ACCIAIO; C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI; interventi applicati secondo la tecnica del beton

Titolo colonna	Descrizione	Nota
Pilas. I	Pilastro sottostante il nodo rinforzato	
Nodo	Numero del nodo rinforzato	
sez a-o	Sezione del pilastro sottostante ante-operam	
sez p-o	Sezione del pilastro sottostante post-operam	Il nodo viene verificato con la sezione del pilastro post-operam se il pilastro ha camicia con continuità flessionale. L'incremento di capacità si cumula a quello di eventuali altri rinforzi, ma per la verifica si considera il coeff. riduttivo 0.9
Diam.	Diametro della armatura orizzontale aggiuntiva nel nodo	L'armatura è riferita a una sola faccia
Passo	Passo dell'armatura orizzontale aggiuntiva nel nodo	
fyk arm.	Tensione caratteristica di snervamento dell'armatura orizzontale aggiuntiva nel nodo	
Spess.	Spessore della piastra di rinforzo applicata nel nodo	La piastra è applicata a una sola faccia
fyk plt.	Tensione caratteristica di snervamento per la piastra di rinforzo applicata nel nodo	
rinforzo frp	Nome nell'archivio o riferimento al prodotto commerciale	Il rinforzo è applicato a una sola faccia

Titolo colonna	Descrizione	Nota
Pilas.	Pilastro di interesse	Gli interventi con tecnologie diverse sono esclusivi, per l'intervento con FRP è prevista la possibilità di attivare separatamente il rinforzo FRP V per taglio e duttilità (*) e quello FRP F per capacità flessionale (**).
		(*) incremento di duttilità considerato solo nelle verifiche con q=1.
		(**) incremento di capacità considerato solo nelle verifiche con q>1
sez a-o	Sezione del pilastro ante-operam	
sez p-o	Sezione del pilastro post-operam	Differente se l'intervento consiste in C8.7.4.2.1 INCAMICIATURA IN C.A
Cont. fless.	Armature longitudinali o angolari opportunamente ancorati alla base e in sommità	Per la camicia in c.a. e acciaio è possibile considerare la continuità del rinforzo interpiano e in questo caso l'incremento di capacità flessionale
rinf. CAM	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.2 INCAMICIATURA IN ACCIAIO
rinf. FRP V	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
rinf. FRP F	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione dei rinforzi CAM o FRP V (per taglio)	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione dei rinforzi FRP F (per flessione)	Come sopra

Titolo colonna	Descrizione	Nota
Trave	Trave di interesse	
sez a-o	Sezione della trave ante-operam	
sez p-o	Sezione della trave post-operam	Differente se l'intervento consiste in C8A.7.1 INCAMICIATURA IN C.A

Cont. fless.	Armature longitudinali o angolari opportunamente ancorati alle estremità	Per la camicia in c.a. e acciaio è possibile considerare la continuità del rinforzo e in questo caso l'incremento di capacità flessionale
rinf. CAM	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.2 INCAMICIATURA IN ACCIAIO
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione dei rinforzi CAM	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza

Titolo colonna	Descrizione	Nota
Trave	Trave di interesse	Per l'intervento con FRP è prevista la possibilità di attivare separatamente il rinforzo FRP V per taglio e duttilità (*) e quello FRP F per capacità flessionale (**).
		(*) incremento di duttilità considerato solo nelle verifiche con q=1.
		(**) incremento di capacità considerato solo nelle verifiche con q>1
rinf. FRP V	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
rinf. FRP F	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione del rinforzo FRP V	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
B sup	Larghezza di applicazione del rinforzo FRP F superiore	
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione dei rinforzi FRP F superiore	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
B inf	Larghezza di applicazione del rinforzo FRP F inferiore	
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione dei rinforzi FRP F inferiore	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza

Titolo colonna	Descrizione	Nota
Trave	Trave di interesse	Per l'intervento con BETON PLAQUE è prevista la possibilità di attivare separatamente il rinforzo per taglio da quello per flessione(*). (*)incremento di capacità considerato solo nelle verifiche con q#1
fyk plt	Tensione caratteristica di snervamento per le piastre di rinforzo	
Spess.	Spessore del rinforzo applicato per il taglio	Il rinforzo si considera adeguatamente ancorato sui due lati dell'anima della trave
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione del rinforzo a taglio	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
A sup	Area complessiva della piastra applicata all'estradosso	
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione del rinforzo superiore	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
A inf	Area complessiva della piastra applicata all'intradosso	

ld	Sigla FRP per c.a.	Spess.	Mod. E	eps r	Direz.	Applic.	Espos.	Fibra	L fasc.	P fasc.	R curv.
		mm	N/mm2	%					mm	mm	mm
3	GeoSteel G2000	0.25	2.100e+05	1.9	uniassiale	tipo A	interna	altro	200.0	400.0	20.0

C8A (APPENDICE AL CAPITOLO C8) - MATERIALI DI RINFORZO UTILIZZATI

PILASTRI: C8A.7.1 INCAMICIATURA IN C.A. - C8A.7.2 INCAMICIATURA IN ACCIAIO - C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI

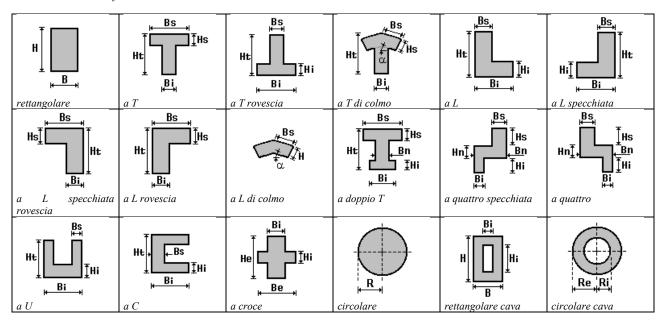
Pilas.	sez a-o	sez p-o	Cont. fless.	rinf. CAM	rinf. FRP V	rinf. FRP F	li V	lc V	If V	li F	lc F	If F
							cm	cm	cm	cm	cm	cm
1	1	1			GeoSteel G2000	GeoSteel G2000						
2	1	1			GeoSteel G2000							
3	1	1			GeoSteel G2000							
	1	1			GeoSteel G2000							
5	1	1			GeoSteel G2000							
4 5 6 7	1	1			GeoSteel G2000							
7	1	1			GeoSteel G2000							
8	1	1			GeoSteel G2000							
9	1	1			GeoSteel G2000							
10	1	1			GeoSteel G2000							
11	1	1			GeoSteel G2000							
12	1	1			GeoSteel G2000							
13	1	1			GeoSteel G2000							
14	1	1			GeoSteel G2000							
15	97	97			GeoSteel G2000	GeoSteel G2000						
16	97	97			GeoSteel G2000	GeoSteel G2000						
17	1	1			GeoSteel G2000	GeoSteel G2000						
18	1	1			GeoSteel G2000	GeoSteel G2000						
19	1	1			GeoSteel G2000	GeoSteel G2000						
20	1	1			GeoSteel G2000	GeoSteel G2000						
21	1	1			GeoSteel G2000	GeoSteel G2000						
22	1	1			GeoSteel G2000	GeoSteel G2000						
23	1	1			GeoSteel G2000	GeoSteel G2000						
23 24 25	1	1			GeoSteel G2000	GeoSteel G2000						
25	97	97			GeoSteel G2000	GeoSteel G2000						
26	97	97			GeoSteel G2000	GeoSteel G2000						
27	1	1			GeoSteel G2000							
28	1	1			GeoSteel G2000							
29	1	1			GeoSteel G2000							
30	1	1			GeoSteel G2000							
31	1	1			GeoSteel G2000							
32	1	1			GeoSteel G2000							
33	1	1			GeoSteel G2000							
34	1	1			GeoSteel G2000							
35	1	1			GeoSteel G2000							
36	1	1			GeoSteel G2000							
37	1	1			GeoSteel G2000							
38	1	1	1		GeoSteel G2000			1	1	1		
39	1	1	1		GeoSteel G2000			1	1	1		
40	1	1	1		GeoSteel G2000			1	1	1		
1.0			4	-1	22201001 02000				1	+	1	

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali


Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

W3-	.3	modulo di resistenza della sezione riferito all'asse 3
Wp2	-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3	-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	Rettangolare: b=29 h=29	841.00	700.83	700.83	9.942e+04	5.894e+04	5.894e+04	4064.83	4064.83	6097.25	6097.25
3	Rettangolare: b=60 h=42	2520.00	2100.00	2100.00	8.417e+05	7.560e+05	3.704e+05	2.520e+04	1.764e+04	3.780e+04	2.646e+04
97	Rettangolare: b=70 h=30	2100.00	1750.00	1750.00	4.599e+05	8.575e+05	1.575e+05	2.450e+04	1.050e+04	3.675e+04	1.575e+04

MODELLAZIONE STRUTTURA: NODI

LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

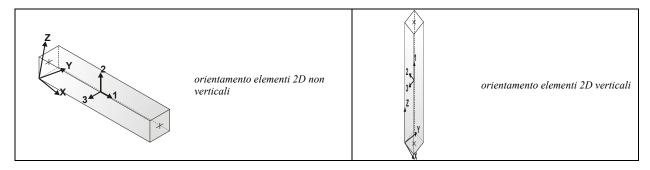
Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Y	valore della coordinata Y
Z	valore della coordinata Z

Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Y	valore della coordinata Y
\boldsymbol{Z}	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore
	l indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su
	pali,) che è collegato al nodo.
	(ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18


IΑ	BELLA DATIT	NODI								
Nodo	X	Υ	Z	Nodo	X	Y	Z	Nodo	X	ΥZ
	cm	cm	cm		cm	cm	cm		cm	cm cm
	D			11.	102					

1 150.0	2523.0	1210.0	150.0	2	1155.0	-20.0	150.0	3	1383.0	-20.0
150.0 4 150.0	1611.0	-20.0	150.0	5	1839.0	-20.0	150.0	6	2067.0	-20.0
7	2295.0	-20.0	150.0	8	2523.0	-20.0	150.0	9	2751.0	-20.0
150.0 10	2979.0	-20.0	150.0	11	3207.0	-20.0	150.0	12	-2.76e-04	1.27e-04
150.0 13 150.0	3450.0	1.27e-04	150.0	14	-2.76e-04	259.0	150.0	15	3450.0	259.0
16 150.0	2751.0	1210.0	150.0	19	1611.0	1210.0	150.0	20	1839.0	1210.0
21 150.0	2067.0	1210.0	150.0	22	2295.0	1210.0	150.0	24	699.0	-20.0
26 150.0	927.0	-20.0	150.0	29	2979.0	1210.0	150.0	30	-2.76e-04	483.0
31 150.0	3450.0	483.0	150.0	32	-2.76e-04	707.0	150.0	33	3450.0	707.0
34 150.0	-2.76e-04	931.0	150.0	35	3450.0	931.0	150.0	36	-2.76e-04	1190.0
37 150.0	3450.0	1190.0	150.0	38	243.0	1210.0	150.0	39	471.0	1210.0
40 150.0	699.0	1210.0	150.0	41	927.0	1210.0	150.0	42	1155.0	1210.0
43 150.0	1383.0	1210.0	150.0	44	3207.0	1210.0	150.0	45	243.0	-20.0
46	471.0	-20.0	150.0							
Nodo RZ	Х	Υ	Z		Note	Rig. TX	Rig. TY	Rig. TZ	Rig. RX	Rig. RY Rig.
	cm	cm	cm			daN/cm	daN/cm	daN/cm da	aN cm/rad d	aN cm/rad daN
cm/rad 17	927.0	1210.0	0.0	v=	111111					
18	927.0	-20.0	0.0							
				v-	111111					
23	699.0	1210.0	0.0		111111 111111					
23 25	699.0 699.0	1210.0 -20.0		v=						
			0.0	v= v=	111111					
25	699.0	-20.0 1190.0 1210.0	0.0 0.0	v= v= v=	111111 111111					
25 27	699.0 3450.0	-20.0 1190.0 1210.0 -20.0	0.0 0.0 0.0	v= v= v= v=	111111 111111 111111					
25 27 28 47 48	699.0 3450.0 471.0 471.0 243.0	-20.0 1190.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0	v= v= v= v=	111111 111111 111111 111111					
25 27 28 47 48 49	699.0 3450.0 471.0 471.0 243.0 243.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V=	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04	0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V=	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51	699.0 3450.0 471.0 471.0 243.0 243.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V=	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 1190.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V= V=	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 1190.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V= V= V= V=	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 3450.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 1190.0 -20.0 2.54e-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V=	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 3450.0 2979.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 1190.0 -20.0 2.54e-04 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V= V= V= V=	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 3450.0 2979.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V= V= V= V= V=	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 3450.0 2979.0 2979.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V= V= V= V= V= V= V=	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 3450.0 2979.0 2979.0 2751.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V= V= V= V= V= V= V= V= V= V= V=	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 3450.0 2979.0 2979.0 2751.0 2523.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 3450.0 2979.0 2979.0 2751.0 2523.0 2523.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 60 61	699.0 3450.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 3450.0 2979.0 2751.0 2751.0 2523.0 2295.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2751.0 2523.0 2295.0 2295.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63	699.0 3450.0 471.0 471.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2751.0 2523.0 2523.0 2295.0 2067.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 22751.0 2523.0 2523.0 2295.0 2295.0 2067.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -3450.0 2979.0 2751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2295.0 2295.0 2295.0 2067.0 1839.0 1839.0 1611.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2523.0 2295.0 2067.0 2067.0 1839.0 1839.0 1611.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2523.0 2295.0 2067.0 2067.0 1839.0 1839.0 1611.0 1383.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 111111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	699.0 3450.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2751.0 2523.0 2295.0 2295.0 2067.0 2067.0 1839.0 1839.0 1611.0 1383.0 1383.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0 1839.0 1611.0 1611.0 1383.0 1383.0 1155.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0 1839.0 1611.0 1383.0 1383.0 1155.0 3450.0 3450.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	699.0 3450.0 471.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 22751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0 1839.0 1611.0 1611.0 1383.0 1383.0 1155.0 1155.0 3450.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	699.0 3450.0 471.0 471.0 243.0 243.0 2276e-04 3207.0 3450.0 2979.0 2751.0 2523.0 2523.0 2295.0 2295.0 2067.0 1839.0 1611.0 1383.0 1155.0 1155.0 3450.0 3450.0 3450.0 3450.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 2.54e-04 1210.0 -20.0 2.54e-04 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1210.0 -20.0 1259.0 483.0 707.0 259.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	699.0 3450.0 471.0 471.0 243.0 243.0 223.0 -2.76e-04 3207.0 3450.0 2979.0 2751.0 2523.0 2295.0 2295.0 2295.0 2067.0 1839.0 1611.0 1383.0 1155.0 1155.0 3450.0 3450.0 3450.0 -2.76e-04 3450.0	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 1210.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	699.0 3450.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2295.0 2295.0 2295.0 2295.0 1839.0 1611.0 1383.0 1155.0 1155.0 3450.0 3450.0 -2.76e-04 3450.0 -2.76e-04	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 1210.0 1210.0 1210.0 -20.0 1259.0 931.0 483.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79	699.0 3450.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2751.0 2523.0 2295.0 2295.0 2295.0 2067.0 1839.0 1611.0 1611.0 1611.0 1383.0 1155.0 3450.0 3450.0 3450.0 -2.76e-04 3450.0 -2.76e-04 -2.76e-04	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 1210.0 1210.0 1210.0 1210.0 -20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					
25 27 28 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	699.0 3450.0 471.0 243.0 243.0 -2.76e-04 3207.0 -2.76e-04 3207.0 2979.0 2979.0 2751.0 2523.0 2295.0 2295.0 2295.0 2295.0 1839.0 1611.0 1383.0 1155.0 1155.0 3450.0 3450.0 -2.76e-04 3450.0 -2.76e-04	-20.0 1190.0 1210.0 -20.0 1210.0 -20.0 1210.0 1210.0 1210.0 -20.0 1259.0 931.0 483.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	V= V	111111 111111 111111 111111 111111 11111					

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

TABELLA DATI TRAVI

 $Il\ programma\ utilizza\ per\ la\ modellazione\ elementi\ a\ due\ nodi\ denominati\ in\ generale\ travi.$

In particolare per ogni elemento viene indicato in tabella:

di licolare per ogni ele	mento viene indicato in tabetta.
Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

Elem. Wink O	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.		Svincolo I	Svincolo J	Wink V
daN/cm3							gradi			daN/cm3
1	Pilas.	49	45	2	1	4				
2	Pilas.	47	46	2	1	4				
3	Pilas.	25	24	2	1	4				
4	Pilas.	18	26	2	1	4				
5	Pilas.	72	2	2	i	4				
6	Pilas.	70	3	2	1	4				
7	Pilas.	68	4	2	1	4				
8	Pilas.	66	5	2	1	4				
9	Pilas.	64	6	2	1	4				
10	Pilas.	62	7	2	1	4				
11	Pilas.	60	8	2	1	4				
12	Pilas. Pilas.	58	9	2	1	4				
13	Pilas.	56	10	2	1	4				
				2	1	4				
14	Pilas.	53	11	2						
15	Pilas.	50	12	2	97	4				
16	Pilas.	54	13	2	97	4				
17	Pilas.	76 70	14	2	1	4				
18	Pilas.	73	15	2	1	4				
19	Pilas.	78 74	30	2	1	4				
20	Pilas.	74	31	2	1	4				
21	Pilas.	79	32	2	1	4				
22	Pilas.	75	33	2	1	4				
23	Pilas.	80	34	2	1	4				
24	Pilas.	77	35	2	1	4				
25	Pilas.	52	36	2	97	4				
26	Pilas.	27	37	2	97	4				
27	Pilas.	48	38	2	1	4				
28	Pilas.	28	39	2	1	4				
29	Pilas.	23	40	2	1	4				
30	Pilas.	17	41	2	1	4				
31	Pilas.	71	42	2	1	4				
32	Pilas.	69	43	2	1	4				
33	Pilas.	67	19	2	1	4				
34	Pilas.	65	20	2	1	4				
35	Pilas.	63	21	2	1	4				
36	Pilas.	61	22	2	1	4				
37	Pilas.	59	1	2	1	4				
38	Pilas.	57	16	2	1	4				
39	Pilas.	55	29	2	1	4				
40	Pilas.	51	44	2	1	4				
41	Trave	45	46	2	3	4				
42	Trave	46	24	2	3	4				

44	Trave	26	2	2	3	4
45	Trave	2	2 3	2 2 2 2 2 2	3	4
46	Trave	3	4	2	3	4
47	Trave	4	5	2	3	4
48	Trave	5	6	2	3	4
49	Trave	6	7	2	3	4
50	Trave	7	8	2 2 2 2 2 2 2	3	4
51	Trave	8	9	2	3	4
52	Trave	9	10	2	3	4
53	Trave	10	11	2	3	4
54	Trave	12	45	2	3	4
55	Trave	11	13	2	3	4
56	Trave	12	14	2	3	4
57	Trave	13	15	2	3	4
58	Trave	14	30	2	3	4
59	Trave	15	31	2	3	4
60	Trave	30	32	2	3	4
61	Trave	31	33	2 2	3	4
62	Trave	32	34	2	3	4
63	Trave	33	35	2	3	4
64	Trave	34	36	2	3	4
65	Trave	35	37	2	3	4
66	Trave	36	38	2	3	4
67	Trave	44	37	2	3	4
68	Trave	38	39	2	3	4
69	Trave	39	40	2	3	4
70	Trave	40	41	2	3	4
71	Trave	41	42	2	3	4
72	Trave	42	43	2 2 2 2 2 2	3	4
73	Trave	43	19		3	4
74	Trave	19	20	2 2	3	4
75	Trave	20	21	2	3	4
76	Trave	21	22	2	3	4
77	Trave	22	1	2	3	4
78	Trave	1	16	2 2 2 2	3	4
79	Trave	16	29	2	3	4
80	Trave	29	44	2	3	4

24

43

Trave

26

2

3

4

MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

L'elemento solaio è uⁱtilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

Id.Arch.	Identificativo dell' archivio
Tipo	Tipo di carico
	Variab. Carico variabile generico
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)
	Neve Carico di neve
G1k	carico permanente (comprensivo del peso proprio)
G2k	carico permanente non strutturale e non compiutamente definito
Qk	carico variabile
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul capitolo
	"normativa di riferimento")
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: per la definizione delle masse
	sismiche
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'elemer	nto
Tipo	codice di comporta	mento
	S	elemento utilizzato solo per scarico
	C	elemento utilizzato per scarico e per modellazione piano rigido

	P elemento utilizzato come pannello
	M scarico monodirezionale
	B scarico bidirezionale
Id.Arch.	Identificativo dell' archivio
Mat	codice del materiale assegnato all'elemento
Spessore	spessore dell'elemento (costante)
Orditura	angolo (rispetto all'asse X) della direzione dei travetti principali
Gk	carico permanente solaio (comprensivo del peso proprio)
Qk	carico variabile solaio
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)

Nel caso in cui si sia proceduto alla progettazione dei solai con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale); nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d e le verifiche per sollecitazioni proporzionali nonché le verifiche in esercizio.

In particolare i simboli utilizzati in tabella assumono il seguente significato:

in particolare i simo	oti uttitzzati in tabetta assumono ti seguente significato:
Elem.	numero identificativo dell'elemento
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);
Pos.	Ascissa del punto di verifica
F ist, F infi	Frecce instantanee e a tempo infinito
Momento	Momento flettente
Taglio	Sollecitazione di taglio
Af inf.	Area di armatura longitudinale posta all'intradosso della trave
Af sup.	Area di armatura longitudinale posta all'estradosso della trave
AfV	Area dell'armatura atta ad assorbire le azioni di taglio
Beff	Base della sezione di cls per l'assorbimento del taglio
	simboli utilizzati con il metodo delle tensioni ammissibili:
sc max	Massima tensione di compressione del calcestruzzo
sf max	Massima tensione nell'acciaio
tau max	Massima tensione tangenziale nel cls
	simboli utilizzati con il metodo degli stati limite:
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione
	(per sola flessione)
verif.	rapporto Sd/Su con sollecitazioni ultime proporzionali:
	valore minore o uguale a 1 per verifica positiva
Verif.V	rapporto Sd/Su con sollecitazioni taglianti proporzionali
	valore minore o uguale a 1 per verifica positiva
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare [normalizzato a 1]
rFfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni frequenti [normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti
	[normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni frequenti [normalizzato a 1]
rFyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato a 1]
rPfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni quasi permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]

Nel caso in cui si sia proceduto alla verifica delle tamponature secondo il D.M. 17.01.2018 - §7.2.3 viene riportata una tabella riassuntiva delle verifiche degli elementi pannello. La verifica confronta i momenti sollecitanti indotti dal sisma con i momenti resistenti, secondo tre ipotesi, due basate sulla resistenza a pressoflessione della tamponatura ed una basata sul cinematismo a seguito della formazione di tre cerniere plastiche sulla tamponatura (rif. Ufficio di Vigilanza sulle Costruzioni, Provincia di Terni).

Qualora la tamponatura sia di tipo antiespulsione (nelle due possibili varianti ordinaria o armata) viene condotta una verifica con meccanismo ad arco con degrado di resistenza. La verifica confronta le pressioni sollecitanti indotte dal sisma con le pressioni resistenti che la tamponatura sviluppa attraverso il meccanismo ad arco. La verifica considera anche il degrado di resistenza dovuto al danneggiamento nel piano della tamponatura. Per quest'ultima tamponatura sono disponibili, in funzione del materiale impiegato (materiale [52]) o materiale [53]):

- Tamponatura Antiespulsione ordinaria Poroton[®] Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova. Utilizzabile per il materiale [52].
- Tamponatura Antiespulsione armata Poroton® Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova. Utilizzabile per il materiale [53].

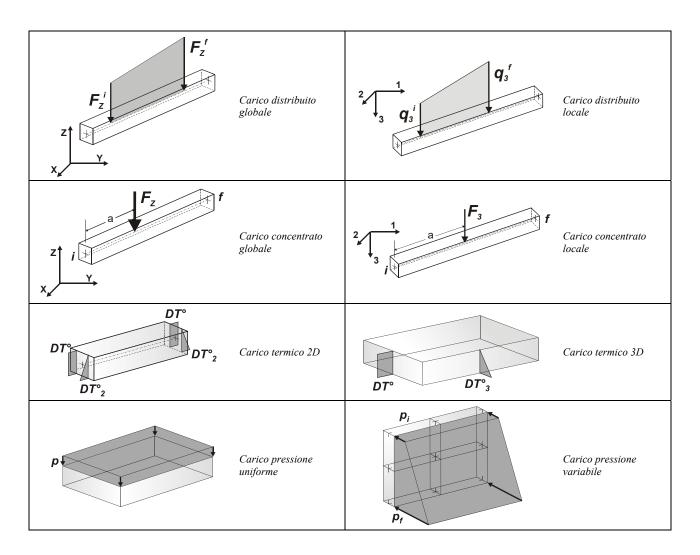
La verifica è stata calibrata sulla base di prove sperimentali sul sistema di Tamponatura Antiespulsione anche in presenza di aperture. (rif. Rapporti di Prova redatti dal Dipartimento ICEA - Università degli Studi di Padova di test sperimentali condotti sul sistema Tamponatura Antiespulsione di Cis Edil)

In particolare i simboli utilizzati in tabella assumono il seguente significato:

Elem.	Numero identificativo dell'elemento
Stato	Codice di verifica
Ver. c.c.	Verifica nell'ipotesi di trave appoggiata con carico concentrato in mezzeria
Ver. c.d.	Verifica nell'ipotesi di trave appoggiata con carico distribuito
Ver. c.cin.	Verifica nell'ipotesi di cinematismo con formazione di cerniere plastiche in appoggio e mezzeria
Ver. CIS	Rapporto pa/pr (valore minore o uguale a 1 per verifica positiva)
Z	Quota del baricentro dell'elemento
T1	Periodo proprio dell'edificio nella direzione di interesse (ortogonale al pannello)

Ta	Periodo proprio della parete
Sa	Accelerazione massima, adimensionalizzata allo SLV
pa	Pressione sulla parete causata dall'azione sismica
pr	Pressione resistente del meccanismo ad arco
Drift	Spostamento relativo interpiano allo SLV valutato secondo il D.M. 14.01.2018 - § 7.3.3.3
Beta a	Coef, riduttivo per tener conto del danneggiamento del piano dipendente dallo spostamento, ottenuto sperimentalmente


ID Arch. Fatt. Fi	Tipo	G [,]	1k	G2k		Qk	Fatt. A	s sis.	, 1	Psi 0	Psi 1	Psi 2	Psi S 2
6 1.00	Neve	daN/cn 4.50e-0		daN/cm2 1.10e-02	daN/c 1.20e			1.00		0.50	0.20	0.0	0.0
Elem. Nodo	Tipo ID A	rch. N	/lat.	SpessoreO	rditura	G11	((G2k	Qk No	odo 1/6	Nodo 2/7	Nodo 3/8	Nodo
						daN/cm2	2 daN/o	cm2 daN	/cm2				
1	CM	6 n	n=2	4.0	90.0	4.50e-02	2 1.10e	e-02 1.20	e-02	45	46	24	26
										3	4	5	6
										8	9	10	11 1
										15	31	33	35 3
										44	29	16	1 2
										21	20	19	43 4
										41	40	39	38 3
										34	32	30	14 1


MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale					
1	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)					
2	spostamento nodale impresso					
2	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)					
3	carico distribuito globale su elemento tipo trave					
3	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)					
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico) 7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)					
4	carico distribuito locale su elemento tipo trave					
4	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)					
5	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)					
3	carico concentrato globale su elemento tipo trave					
_	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)					
6	carico concentrato locale su elemento tipo trave					
_	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)					
7	variazione termica applicata ad elemento tipo trave					
_	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale e finale)					
8	carico di pressione uniforme su elemento tipo piastra					
_	1 dato (pressione)					
9	carico di pressione variabile su elemento tipo piastra					
	4 dati (pressione, quota, pressione, quota)					
10	variazione termica applicata ad elemento tipo piastra					
	2 dati (variazioni termiche: media e differenza nello spessore)					
11	carico variabile generale su elementi tipo trave e piastra					
	l dato descrizione della tipologia					
	4 dati per segmento (posizione, valore, posizione, valore)					
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la larghezza d'influenza					
	per gli elementi tipo trave					
12	gruppo di carichi con impronta su piastra					
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del primo, dimensioni dell'					
	impronta, interasse tra i carichi					

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico. Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione		
1	Ggk	A	caso di carico comprensivo del peso proprio struttura		
2	Gk	NA	caso di carico con azioni permanenti		
3	Qk	NA	caso di carico con azioni variabili		
4	Gsk	A caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture			
5	Qsk	A	caso di carico comprensivo dei carichi variabili sui solai		
6	Qnk	A	caso di carico comprensivo dei carichi di neve sulle coperture		
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura		
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura		
9	Esk	SA	caso di carico sismico con analisi statica equivalente		
10	Edk	SA	caso di carico sismico con analisi dinamica		
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica		
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni		

Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico: 7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

CDC		Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gsk	CDC=G1sk (permanente solai-coperture)	
3	Gsk	CDC=G2sk (permanente solai-coperture n.c.d.)	
4	Qnk	CDC=Qnk (carico da neve)	
5	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G1sk (permanente solai-coperture)
			partecipazione:1.00 per 3 CDC=G2sk (permanente solai-coperture n.c.d.)
			partecipazione:1.00 per 4 CDC=Qnk (carico da neve)
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
7	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
11	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$$

Combinazione caratteristica (rara) SLE

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente SLE

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente SLE

$$G1 + G2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

$$G_1 + G_2 + A_d + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	ψ1	ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

⁻ per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),

⁻ per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A 1	A2
		γf			
Carichi permanenti	Favorevoli	γG1	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Carichi permanenti non strutturali	Favorevoli	γG2	0,8	0,8	0,8
(Non compiutamente definiti)	Sfavorevoli		1,5	1,5	1,3
Carichi variabili	Favorevoli	γQi	0,0	0,0	0,0
	Sfavorevoli		1,5	1,5	1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 2	
2	SLU	Comb. SLU A1 3	
3	SLU	Comb. SLU A1 4	
4	SLU	Comb. SLU A1 5	
5	SLU	Comb. SLU A1 (SLV sism.) 6	
6	SLU	Comb. SLU A1 (SLV sism.) 7	
7	SLU	Comb. SLU A1 (SLV sism.) 8	
8	SLU	Comb. SLU A1 (SLV sism.) 9	
9	SLU	Comb. SLU A1 (SLV sism.) 10	
10	SLU	Comb. SLU A1 (SLV sism.) 11	
11	SLU	Comb. SLU A1 (SLV sism.) 12	
12	SLU	Comb. SLU A1 (SLV sism.) 13	
13	SLU	Comb. SLU A1 (SLV sism.) 14	
14	SLU	Comb. SLU A1 (SLV sism.) 15	
15	SLU	Comb. SLU A1 (SLV sism.) 16	
16	SLU		
-		Comb. SLU A1 (SLV sism.) 17	
17	SLU	Comb. SLU A1 (SLV sism.) 18	
18	SLU	Comb. SLU A1 (SLV sism.) 19	
19	SLU	Comb. SLU A1 (SLV sism.) 20	
20	SLU	Comb. SLU A1 (SLV sism.) 21	
21	SLU	Comb. SLU A1 (SLV sism.) 22	
22	SLU	Comb. SLU A1 (SLV sism.) 23	
23	SLU	Comb. SLU A1 (SLV sism.) 24	
24	SLU	Comb. SLU A1 (SLV sism.) 25	
25	SLU	Comb. SLU A1 (SLV sism.) 26	
26	SLU	Comb. SLU A1 (SLV sism.) 27	
27	SLU	Comb. SLU A1 (SLV sism.) 28	
28	SLU	Comb. SLU A1 (SLV sism.) 29	
29	SLU	Comb. SLU A1 (SLV sism.) 30	
30	SLU	Comb. SLU A1 (SLV sism.) 31	
31	SLU	Comb. SLU A1 (SLV sism.) 32	
32	SLU	Comb. SLU A1 (SLV sism.) 33	
33	SLU	Comb. SLU A1 (SLV sism.) 34	
34	SLU	Comb. SLU A1 (SLV sism.) 35	
35	SLU	Comb. SLU A1 (SLV sism.) 36	
36	SLU	Comb. SLU A1 (SLV sism.) 37	
37	SLD(sis)	Comb. SLE (SLD Danno sism.) 38	
38	SLD(sis)	Comb. SLE (SLD Danno sism.) 39	
39	SLD(sis)	Comb. SLE (SLD Danno sism.) 40	
40	SLD(sis)	Comb. SLE (SLD Danno sism.) 41	
41	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 43	
43	SLD(sis)	Comb. SLE (SLD Danno sism.) 44	
44	SLD(sis)	Comb. SLE (SLD Danno sism.) 45	
45	SLD(sis)	Comb. SLE (SLD Danno sism.) 46	
46	` '	Comb. SLE (SLD Danno sism.) 47	
47	SLD(sis)	Comb. SLE (SLD Danno sism.) 48	
48	SLD(sis)	Comb. SLE (SLD Danno sism.) 49	
49	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	
50	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	
51	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
100	(010)	Comme Care (Care Barrie Sioni.) 00	

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Cmb	Tipo	Sigla Id	effetto P-delta
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
58	SLD(sis)	Comb. SLE (SLD Danno sism.) 59	
59	SLD(sis)	Comb. SLE (SLD Danno sism.) 60	
60	SLD(sis)	Comb. SLE (SLD Danno sism.) 61	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 67	
67	SLD(sis)	Comb. SLE (SLD Danno sism.) 68	
68	SLD(sis)	Comb. SLE (SLD Danno sism.) 69	
69	SLE(r)	Comb. SLE(rara) 70	
70	SLE(r)	Comb. SLE(rara) 71	
71	SLE(f)	Comb. SLE(freq.) 72	
72	SLE(f)	Comb. SLE(freq.) 73	
73	SLE(p)	Comb. SLE(perm.) 74	

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
1	1.30	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
2	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
3	1.00	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
4	1.00	1.00	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
5	1.00	1.00	1.00	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0		
6	1.00	1.00	1.00	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0		
<i>/</i>	1.00	1.00	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0		
8	1.00	1.00	1.00	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0		
9 10	1.00	1.00	1.00	0.0	-1.00 -1.00	0.0	0.0	-0.30 0.30	0.0	0.0	0.0	0.0		
11	1.00	1.00	1.00	0.0	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0		
12	1.00	1.00	1.00	0.0	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0		
13	1.00	1.00	1.00	0.0	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0		
14	1.00	1.00	1.00	0.0	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0		
15	1.00	1.00	1.00	0.0	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0		
16	1.00	1.00	1.00	0.0	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0		
17	1.00	1.00	1.00	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0		
18	1.00	1.00	1.00	0.0	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0		
19	1.00	1.00	1.00	0.0	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0		
20	1.00	1.00	1.00	0.0	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0		
21	1.00	1.00	1.00	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0		
22	1.00	1.00	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0		
23	1.00	1.00	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0		
24	1.00	1.00	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0		
25	1.00	1.00	1.00	0.0	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0		
26	1.00	1.00	1.00	0.0	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0		
27	1.00	1.00	1.00	0.0	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0		
28	1.00	1.00	1.00	0.0	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0		
29	1.00	1.00	1.00	0.0	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0		
30	1.00	1.00	1.00	0.0	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0		
31	1.00	1.00	1.00	0.0	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0		
32	1.00	1.00	1.00	0.0	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0		
33	1.00	1.00	1.00	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0		
34	1.00	1.00	1.00	0.0	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0		
35	1.00	1.00	1.00	0.0	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0		
36 37	1.00	1.00	1.00	0.0	0.0	0.30	0.0	1.00 0.0	0.0 -1.00	0.0	0.0 -0.30	0.0		
38	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0		
39	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0		
40	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0		
41	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30		
42	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30	+	
43	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30		
44	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30		
45	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0		
46	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0		
47	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0		
48	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0		
49	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30		
50	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30		
51	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30		
52	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30		
53	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0		
54	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0		

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
55	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0		
56	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0		
57	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0		
58	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0		
59	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0		
60	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0		
61	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00		
62	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00		
63	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00		
64	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00		
65	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00		
66	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00		
67	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00		
68	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00		
69	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
70	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
71	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
72	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
73	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://essel.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell'allegato alle NTC (rispettivamente media pesata e interpolazione).

L'azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri della struttura										
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica					
III	50.0	1.5	75.0	C	T1					

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella seguente Tabella

Categoria sottosuolo	S_S	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o}\left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

I valori di S_S , T_B , T_C e T_D , sono riportati nella seguente Tabella

· ·				
Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	12.031	44.377	
17406	12.022	44.376	0.714
17407	12.092	44.377	4.840
17185	12.090	44.427	7.253
17184	12.021	44.426	5.487

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	45.0	0.066	2.446	0.270
SLD	63.0	75.0	0.082	2.443	0.281
SLV	10.0	712.0	0.210	2.406	0.305
SLC	5.0	1462.0	0.272	2.400	0.311

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.066	1.500	2.446	0.848	0.146	0.437	1.864
SLD	0.082	1.500	2.443	0.944	0.150	0.449	1.928
SLV	0.210	1.396	2.406	1.490	0.158	0.474	2.442
SLC	0.272	1.309	2.400	1.688	0.160	0.480	2.686

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente
10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di ingresso	Angolo di ingresso dell'azione sismica orizzontale
Fattore di importanza	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
Zona sismica	Zona sismica
Accelerazione ag	Accelerazione orizzontale massima sul suolo
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità CD	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
Fattore riduz. SLD	Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio T1	Periodo proprio di vibrazione della struttura
Coefficiente Lambda	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Ordinata spettro	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale (verticale Svd)
<i>Sd(T1)</i>	
Ordinata spettro	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno, componente orizzontale (verticale
Se(T1)	Sve)
Ordinata spettro S (Tb-	Valore dell' ordinata dello spettro in uso nel tratto costante
Tc)	
numero di modi	Numero di modi di vibrare della struttura considerati nell'analisi dinamica
considerati	

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

- a) analisi sismica statica equivalente:
 - quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - azione sismica complessiva
- b) analisi sismica dinamica con spettro di risposta:
 - quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
 - massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL.PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell' isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva , NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi) combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)
V	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio
Gam c(a,s,t)	Deformazioni di taglio dell' elestomero
Vcr	Carico critico per instabilità

Affinché la verifica sia positiva deve essere:

- V > 0
- $\begin{array}{ccc}
 1) & v & \circ & \circ \\
 2) & \underline{Sig \ s < fyk}
 \end{array}$

- 3) Gam t < 5
 4) Gam s < Gam * (caratteristica dell' elastomero)
 5) Gam s < 2
 6) V < 0.5 Vcr

CDC	Tipo	Sigla Id	Note					
5	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)						
			verifica esistenti: fattore FC 1.200					
			categoria suolo: C					
			fattore di sito S = 1.396					
			ordinata spettro (tratto Tb-Tc) = 0.707 g					
			angolo di ingresso:0.0					
			eccentricità aggiuntiva: positiva					
			periodo proprio T1: 0.077 sec.					
			fattore q: 1.000					
			fattore q (fragili): 1.000					
			fattore per spost. mu d: 1.000					
			classe di duttilità CD: ND					
			numero di modi considerati: 9					
			combinaz. modale: CQC					

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	0.0	-61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
	_		Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	9.821	0.102	0.560	2.95e-04	0.0	2.695e+05	89.0	9.43e-06	0.0	0.0	0.0
2	13.040	0.077	0.494	3.002e+05	99.1	2.35e-05	0.0	0.0	0.0	0.0	0.0
3	16.137	0.062	0.456	2184.28	0.7	0.23	7.68e-05	5.98e-06	0.0	0.0	0.0
4	23.409	0.043	0.405	0.69	2.29e-04	3.043e+04	10.0	0.05	1.67e-05	0.0	0.0
5	24.965	0.040	0.398	317.42	0.1	38.53	1.27e-02	3.27e-06	0.0	0.0	0.0
6	28.949	0.035	0.384	2.71e-04	0.0	393.04	0.1	5.50	1.81e-03	0.0	0.0
7	35.421	0.028	0.368	0.92	3.03e-04	0.28	9.24e-05	0.06	1.85e-05	0.0	0.0
8	36.264	0.028	0.366	11.90	3.93e-03	9.48	3.13e-03	0.03	8.80e-06	0.0	0.0
9	36.502	0.027	0.365	0.47	1.55e-04	7.69e-03	2.54e-06	0.24	7.79e-05	0.0	0.0
Risulta				3.027e+05		3.004e+05		5.86			
In				99.97		99.20		1.94e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.077 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	0.0	61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3 028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace Z	%	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	9.821	0.102	0.560	7.17e-04	0.0	2.695e+05	89.0	1.98e-05	0.0	0.0	0.0

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace Z	2 %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
2	13.040	0.077	0.494	3.002e+05	99.1	3.41e-03	1.12e-06	0.0	0.0	0.0	0.0
3	16.137	0.062	0.456	2181.52	0.7	0.18	6.03e-05	6.51e-06	0.0	0.0	0.0
4	23.415	0.043	0.405	0.71	2.33e-04	3.049e+04	10.1	0.04	1.48e-05	0.0	0.0
5	24.961	0.040	0.399	317.66	0.1	32.28	1.07e-02	1.41e-03	0.0	0.0	0.0
6	28.905	0.035	0.384	4.89e-03	1.61e-06	341.77	0.1	5.34	1.76e-03	0.0	0.0
7	35.544	0.028	0.367	0.54	1.79e-04	0.02	6.44e-06	0.35	1.14e-04	0.0	0.0
8	36.197	0.028	0.366	9.71	3.20e-03	15.15	5.00e-03	0.14	4.64e-05	0.0	0.0
9	36.515	0.027	0.365	1.73	5.71e-04	0.23	7.61e-05	0.13	4.15e-05	0.0	0.0
Risulta				3.027e+05		3.004e+05		6.00			
In				99.97		99.20		1.98e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.102 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	9.785	0.102	0.561	3.68e-04	0.0	2.704e+05	89.3	0.0	0.0	0.0	0.0
2	13.084	0.076	0.494	3.027e+05	100.0	8.85e-04	0.0	0.0	0.0	0.0	0.0
3	16.106	0.062	0.456	1.39e-03	0.0	101.49	3.35e-02	5.46e-06	0.0	0.0	0.0
4	23.619	0.042	0.404	2.09e-03	0.0	2.814e+04	9.3	1.84e-05	0.0	0.0	0.0
5	24.910	0.040	0.399	1.75e-05	0.0	1647.59	0.5	1.17e-04	0.0	0.0	0.0
6	28.962	0.035	0.384	0.03	9.39e-06	0.61	2.00e-04	5.66	1.87e-03	0.0	0.0
7	34.781	0.029	0.369	5.07	1.67e-03	2.55	8.41e-04	0.08	2.63e-05	0.0	0.0
8	34.867	0.029	0.369	0.61	2.02e-04	9.43	3.12e-03	3.83e-03	1.26e-06	0.0	0.0
9	36.934	0.027	0.365	0.01	3.97e-06	38.07	1.26e-02	0.06	1.94e-05	0.0	0.0
Risulta				3.027e+05		3.003e+05		5.80			
In				99.97		99.17		1.92e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.102 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	-172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	9.789	0.102	0.561	5.39e-04	0.0	2.703e+05	89.2	0.0	0.0	0.0	0.0
2	13.084	0.076	0.494	3.027e+05	100.0	9.04e-04	0.0	0.0	0.0	0.0	0.0
3	16.136	0.062	0.456	1.09e-04	0.0	89.97	2.97e-02	5.43e-06	0.0	0.0	0.0
4	23.672	0.042	0.404	3.18e-04	0.0	2.935e+04	9.7	3.35e-05	0.0	0.0	0.0
5	24.888	0.040	0.399	1.80e-06	0.0	735.89	0.2	1.60e-04	0.0	0.0	0.0
6	28.958	0.035	0.384	0.03	1.09e-05	0.43	1.42e-04	5.64	1.86e-03	0.0	0.0
7	34.267	0.029	0.370	6.03	1.99e-03	8.78e-06	0.0	0.14	4.75e-05	0.0	0.0
8	35.385	0.028	0.368	1.52e-03	0.0	4.11	1.36e-03	0.02	7.48e-06	0.0	0.0
9	36.538	0.027	0.365	0.01	4.16e-06	6.88	2.27e-03	5.48e-03	1.81e-06	0.0	0.0
Risulta				3.027e+05		3.005e+05		5.81			
ln				99.97		99.22		1.92e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.077 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	0.0	-61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	9.821	0.102	0.243	2.95e-04	0.0	2.695e+05	89.0	9.43e-06	0.0	0.0	0.0
2	13.040	0.077	0.214	3.002e+05	99.1	2.35e-05	0.0	0.0	0.0	0.0	0.0
3	16.137	0.062	0.196	2184.28	0.7	0.23	7.68e-05	5.98e-06	0.0	0.0	0.0
4	23.409	0.043	0.174	0.69	2.29e-04	3.043e+04	10.0	0.05	1.67e-05	0.0	0.0
5	24.965	0.040	0.170	317.42	0.1	38.53	1.27e-02	3.27e-06	0.0	0.0	0.0
6	28.949	0.035	0.164	2.71e-04	0.0	393.04	0.1	5.50	1.81e-03	0.0	0.0
7	35.421	0.028	0.156	0.92	3.03e-04	0.28	9.24e-05	0.06	1.85e-05	0.0	0.0
8	36.264	0.028	0.156	11.90	3.93e-03	9.48	3.13e-03	0.03	8.80e-06	0.0	0.0
9	36.502	0.027	0.155	0.47	1.55e-04	7.69e-03	2.54e-06	0.24	7.79e-05	0.0	0.0
Risulta				3.027e+05		3.004e+05		5.86			
ln				99.97		99.20		1.94e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.077 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	0.0	61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	9.821	0.102	0.243	7.17e-04	0.0	2.695e+05	89.0	1.98e-05	0.0	0.0	0.0
2	13.040	0.077	0.214	3.002e+05	99.1	3.41e-03	1.12e-06	0.0	0.0	0.0	0.0
3	16.137	0.062	0.196	2181.52	0.7	0.18	6.03e-05	6.51e-06	0.0	0.0	0.0
4	23.415	0.043	0.174	0.71	2.33e-04	3.049e+04	10.1	0.04	1.48e-05	0.0	0.0
5	24.961	0.040	0.170	317.66	0.1	32.28	1.07e-02	1.41e-03	0.0	0.0	0.0
6	28.905	0.035	0.164	4.89e-03	1.61e-06	341.77	0.1	5.34	1.76e-03	0.0	0.0
7	35.544	0.028	0.156	0.54	1.79e-04	0.02	6.44e-06	0.35	1.14e-04	0.0	0.0
8	36.197	0.028	0.156	9.71	3.20e-03	15.15	5.00e-03	0.14	4.64e-05	0.0	0.0
9	36.515	0.027	0.155	1.73	5.71e-04	0.23	7.61e-05	0.13	4.15e-05	0.0	0.0
Risulta				3.027e+05		3.004e+05		6.00			
In				99.97		99.20		1.98e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
11	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.102 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	9.785	0.102	0.244	3.68e-04	0.0	2.704e+05	89.3	0.0	0.0	0.0	0.0
2	13.084	0.076	0.213	3.027e+05	100.0	8.85e-04	0.0	0.0	0.0	0.0	0.0
3	16.106	0.062	0.196	1.39e-03	0.0	101.49	3.35e-02	5.46e-06	0.0	0.0	0.0
4	23.619	0.042	0.173	2.09e-03	0.0	2.814e+04	9.3	1.84e-05	0.0	0.0	0.0
5	24.910	0.040	0.171	1.75e-05	0.0	1647.59	0.5	1.17e-04	0.0	0.0	0.0
6	28.962	0.035	0.164	0.03	9.39e-06	0.61	2.00e-04	5.66	1.87e-03	0.0	0.0
7	34.781	0.029	0.157	5.07	1.67e-03	2.55	8.41e-04	0.08	2.63e-05	0.0	0.0
8	34.867	0.029	0.157	0.61	2.02e-04	9.43	3.12e-03	3.83e-03	1.26e-06	0.0	0.0
9	36.934	0.027	0.155	0.01	3.97e-06	38.07	1.26e-02	0.06	1.94e-05	0.0	0.0
Risulta				3.027e+05		3.003e+05		5.80			
In				99.97		99.17		1.92e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.102 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.028e+05	1725.00	595.00	-172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.028e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	9.789	0.102	0.244	5.39e-04	0.0	2.703e+05	89.2	0.0	0.0	0.0	0.0
2	13.084	0.076	0.213	3.027e+05	100.0	9.04e-04	0.0	0.0	0.0	0.0	0.0
3	16.136	0.062	0.196	1.09e-04	0.0	89.97	2.97e-02	5.43e-06	0.0	0.0	0.0
4	23.672	0.042	0.173	3.18e-04	0.0	2.935e+04	9.7	3.35e-05	0.0	0.0	0.0
5	24.888	0.040	0.171	1.80e-06	0.0	735.89	0.2	1.60e-04	0.0	0.0	0.0
6	28.958	0.035	0.164	0.03	1.09e-05	0.43	1.42e-04	5.64	1.86e-03	0.0	0.0
7	34.267	0.029	0.158	6.03	1.99e-03	8.78e-06	0.0	0.14	4.75e-05	0.0	0.0
8	35.385	0.028	0.156	1.52e-03	0.0	4.11	1.36e-03	0.02	7.48e-06	0.0	0.0
9	36.538	0.027	0.155	0.01	4.16e-06	6.88	2.27e-03	5.48e-03	1.81e-06	0.0	0.0
Risulta				3.027e+05		3.005e+05		5.81			
ln				99.97		99.22		1.92e-03			
percentuale											

Cmb inter. h	Pilas. 100	00 etaT/h	etaT	inter. h	Pilas. 1000	etaT/h	etaT	inter. h	Pilas. 100	0 etaT/h	etaT
			cm	cm			cm	cm			cm
cm 37	1	0.25	0.04	150.0	2	0.26	0.04	150.0	3	0.26	0.04
150.0	4	0.27	0.04	150.0	5	0.27	0.04	150.0	6	0.27	0.04
150.0	7	0.27	0.04	150.0	8	0.27	0.04	150.0	9	0.27	0.04
150.0	10	0.26	0.04	150.0	11	0.25	0.04	150.0	12	0.24	0.04
150.0	13	0.22	0.03	150.0	14	0.21	0.03	150.0	15	0.24	0.04
150.0	16	0.20	0.03	150.0	17	0.23	0.03	150.0	18	0.20	0.03
150.0	19	0.21	0.03	150.0	20	0.21	0.03	150.0	21	0.20	0.03
150.0	22	0.21	0.03	150.0	23	0.19	0.03	150.0	24	0.21	0.03
150.0	25	0.17	0.03	150.0	26	0.22	0.03	150.0	27	0.17	0.03
150.0	28	0.18	0.03	150.0	29	0.19	0.03	150.0	30	0.21	0.03
150.0	31	0.22	0.03	150.0	32	0.23	0.03	150.0	33	0.24	0.04
150.0	34	0.25	0.04	150.0	35	0.25	0.04	150.0	36	0.26	0.04
150.0			0.04		38				39	0.24	0.04
150.0	37	0.25		150.0	30	0.25	0.04	150.0	39	0.24	0.04
38	40 1	0.23 0.21	0.03 0.03	150.0 150.0	2	0.22	0.03	150.0	3	0.23	0.03
150.0	4	0.24	0.04	150.0	5	0.25	0.04	150.0	6	0.26	0.04
150.0	7	0.27	0.04	150.0	8	0.27	0.04	150.0	9	0.27	0.04
150.0	10	0.27	0.04	150.0	11	0.26	0.04	150.0	12	0.26	0.04
150.0	13	0.25	0.04	150.0	14	0.24	0.04	150.0	15	0.20	0.03
150.0	16	0.23	0.03	150.0	17	0.21	0.03	150.0	18	0.22	0.03
150.0	19	0.21	0.03	150.0	20	0.20	0.03	150.0	21	0.22	0.03
150.0	22	0.19	0.03	150.0	23	0.22	0.03	150.0	24	0.18	0.03
150.0	25	0.23	0.03	150.0	26	0.16	0.02	150.0	27	0.24	0.04
150.0	28	0.24	0.04	150.0	29	0.25	0.04	150.0	30	0.26	0.04
150.0	31	0.24	0.04	150.0	32	0.26	0.04	150.0	33	0.25	0.04
150.0	34	0.25	0.04	150.0	35	0.24	0.04	150.0	36	0.23	0.04
	- 34	0.23	0.04	130.0	35	0.24	0.04	150.0	30	0.23	0.03

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	37	0.21	0.03	150.0	38	0.20	0.03	150.0	39	0.18	0.03
150.0 39	40 1	0.17 0.20	0.03 0.03	150.0 150.0	2	0.21	0.03	150.0	3	0.23	0.03
150.0	4	0.24	0.04	150.0	5	0.25	0.04	150.0	6	0.26	0.04
150.0	7	0.26	0.04	150.0	8	0.27	0.04	150.0	9	0.27	0.04
150.0	10	0.27	0.04	150.0	11	0.27	0.04	150.0	12	0.26	0.04
150.0	13	0.26	0.04	150.0	14	0.25	0.04	150.0	15	0.19	0.03
150.0	16	0.24	0.04	150.0	17	0.20	0.03	150.0	18	0.23	0.03
150.0	19	0.20	0.03	150.0	20	0.22	0.03	150.0	21	0.21	0.03
150.0	22	0.20	0.03	150.0	23	0.21	0.03	150.0	24	0.19	0.03
150.0	25	0.20	0.03	150.0	26	0.21	0.03	150.0	27	0.19	0.03
150.0	28	0.21	0.03	150.0	29	0.17	0.03	150.0	30	0.25	0.03
150.0											
150.0	31	0.25	0.04	150.0	32	0.26	0.04	150.0	33	0.25	0.04
150.0	34	0.25	0.04	150.0	35	0.24	0.04	150.0	36	0.23	0.03
150.0	37	0.22	0.03	150.0	38	0.20	0.03	150.0	39	0.19	0.03
40 150.0	40 1	0.18 0.24	0.03 0.04	150.0 150.0	2	0.25	0.04	150.0	3	0.25	0.04
	4	0.26	0.04	150.0	5	0.27	0.04	150.0	6	0.27	0.04
150.0	7	0.27	0.04	150.0	8	0.27	0.04	150.0	9	0.27	0.04
150.0	10	0.26	0.04	150.0	11	0.26	0.04	150.0	12	0.25	0.04
150.0	13	0.23	0.03	150.0	14	0.22	0.03	150.0	15	0.23	0.03
150.0	16	0.21	0.03	150.0	17	0.22	0.03	150.0	18	0.22	0.03
150.0	19	0.20	0.03	150.0	20	0.22	0.03	150.0	21	0.19	0.03
150.0	22	0.22	0.03	150.0	23	0.17	0.03	150.0	24	0.22	0.03
150.0	25	0.16	0.02	150.0	26	0.23	0.03	150.0	27	0.16	0.02
150.0	28	0.17	0.03	150.0	29	0.19	0.03	150.0	30	0.20	0.03
150.0	31	0.21	0.03	150.0	32	0.23	0.03	150.0	33	0.24	0.04
150.0	34	0.25	0.04	150.0	35	0.26	0.04	150.0	36	0.26	0.04
150.0	37	0.26	0.04	150.0	38	0.26	0.04	150.0	39	0.25	0.04
150.0	40	0.24	0.04	150.0							
41 150.0	1	0.25	0.04	150.0	2	0.26	0.04	150.0	3	0.26	0.04
150.0	4	0.27	0.04	150.0	5	0.27	0.04	150.0	6	0.27	0.04
150.0	7	0.27	0.04	150.0	8	0.26	0.04	150.0	9	0.26	0.04
150.0	10	0.25	0.04	150.0	11	0.24	0.04	150.0	12	0.23	0.03
150.0	13	0.21	0.03	150.0	14	0.20	0.03	150.0	15	0.24	0.04
150.0	16	0.19	0.03	150.0	17	0.23	0.03	150.0	18	0.20	0.03
150.0	19	0.22	0.03	150.0	20	0.20	0.03	150.0	21	0.20	0.03
150.0	22	0.21	0.03	150.0	23	0.19	0.03	150.0	24	0.21	0.03
150.0	25	0.17	0.03	150.0	26	0.21	0.03	150.0	27	0.18	0.03
150.0	28	0.19	0.03	150.0	29	0.20	0.03	150.0	30	0.22	0.03

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	31	0.23	0.03	150.0	32	0.24	0.04	150.0	33	0.25	0.04
150.0	34	0.25	0.04	150.0	35	0.25	0.04	150.0	36	0.25	0.04
150.0	37	0.25	0.04	150.0	38	0.24	0.04	150.0	39	0.24	0.04
42	40 1	0.23 0.22	0.03 0.03	150.0 150.0	2	0.23	0.03	150.0	3	0.24	0.04
150.0	4	0.26	0.04	150.0	5	0.26	0.04	150.0	6	0.27	0.04
150.0	7	0.27	0.04	150.0	8	0.27	0.04	150.0	9	0.27	0.04
150.0	10	0.27	0.04	150.0	11	0.26	0.04	150.0	12	0.25	0.04
150.0	13	0.25	0.04	150.0	14	0.24	0.04	150.0	15	0.21	0.03
150.0	16	0.23	0.03	150.0	17	0.22	0.03	150.0	18	0.22	0.03
150.0	19	0.22	0.03	150.0	20	0.20	0.03	150.0	21	0.22	0.03
150.0	22	0.19	0.03	150.0	23	0.22	0.03	150.0	24	0.18	0.03
150.0	25	0.23	0.03	150.0	26	0.16	0.02	150.0	27	0.24	0.04
150.0	28	0.25	0.04	150.0	29	0.26	0.04	150.0	30	0.26	0.04
150.0	31	0.26	0.04	150.0	32	0.26	0.04	150.0	33	0.25	0.04
150.0	34	0.24	0.04	150.0	35	0.23	0.03	150.0	36	0.21	0.03
150.0	37	0.20	0.03	150.0	38	0.19	0.03	150.0	39	0.17	0.03
150.0	40	0.16	0.02	150.0							
43 150.0	1	0.21	0.03	150.0	2	0.22	0.03	150.0	3	0.24	0.04
150.0	4	0.25	0.04	150.0	5	0.26	0.04	150.0	6	0.27	0.04
150.0	7	0.27	0.04	150.0	8	0.27	0.04	150.0	9	0.27	0.04
150.0	10	0.27	0.04	150.0	11	0.27	0.04	150.0	12	0.26	0.04
150.0	13	0.26	0.04	150.0	14	0.25	0.04	150.0	15	0.20	0.03
150.0	16	0.24	0.04	150.0	17	0.20	0.03	150.0	18	0.23	0.03
150.0	19	0.21	0.03	150.0	20	0.21	0.03	150.0	21	0.21	0.03
150.0	22	0.20	0.03	150.0	23	0.21	0.03	150.0	24	0.19	0.03
150.0	25	0.22	0.03	150.0	26	0.17	0.03	150.0	27	0.23	0.03
150.0	28	0.24	0.04	150.0	29	0.25	0.04	150.0	30	0.26	0.04
150.0	31	0.26	0.04	150.0	32	0.25	0.04	150.0	33	0.25	0.04
150.0	34	0.24	0.04	150.0	35	0.23	0.03	150.0	36	0.22	0.03
150.0	37	0.21	0.03	150.0	38	0.19	0.03	150.0	39	0.18	0.03
44	40 1	0.17 0.24	0.03 0.04	150.0 150.0	2	0.25	0.04	150.0	3	0.26	0.04
150.0	4	0.26	0.04	150.0	5	0.27	0.04	150.0	6	0.27	0.04
150.0	7	0.27	0.04	150.0	8	0.27	0.04	150.0	9	0.26	0.04
150.0	10	0.25	0.04	150.0	11	0.24	0.04	150.0	12	0.23	0.03
150.0	13	0.22	0.03	150.0	14	0.21	0.03	150.0	15	0.23	0.03
150.0	16	0.20	0.03	150.0	17	0.22	0.03	150.0	18	0.21	0.03
150.0	19	0.20	0.03	150.0	20	0.21	0.03	150.0	21	0.19	0.03
150.0	22	0.22	0.03	150.0	23	0.18	0.03	150.0	24	0.22	0.03
150.0	25	0.16	0.02	150.0	26	0.23	0.03	150.0	27	0.17	0.03

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	28	0.18	0.03	150.0	29	0.20	0.03	150.0	30	0.21	0.03
150.0	31	0.23	0.03	150.0	32	0.24	0.04	150.0	33	0.25	0.04
150.0	34	0.25	0.04	150.0	35	0.26	0.04	150.0	36	0.26	0.04
150.0	37	0.25	0.04	150.0	38	0.25	0.04	150.0	39	0.25	0.04
150.0	40	0.24	0.04	150.0							
45 150.0	1	0.24	0.04	150.0	2	0.24	0.04	150.0	3	0.25	0.04
150.0	4	0.26	0.04	150.0	5	0.26	0.04	150.0	6	0.26	0.04
150.0	7	0.25	0.04	150.0	8	0.25	0.04	150.0	9	0.24	0.04
150.0	10	0.23	0.03	150.0	11	0.21	0.03	150.0	12	0.20	0.03
150.0	13	0.18	0.03	150.0	14	0.17	0.03	150.0	15	0.23	0.03
150.0	16	0.16	0.02	150.0	17	0.22	0.03	150.0	18	0.18	0.03
150.0	19	0.22	0.03	150.0	20	0.19	0.03	150.0	21	0.21	0.03
150.0	22	0.20	0.03	150.0	23	0.21	0.03	150.0	24	0.22	0.03
150.0	25	0.20	0.03	150.0	26	0.23	0.03	150.0	27	0.21	0.03
150.0	28	0.22	0.03	150.0	29	0.23	0.03	150.0	30	0.24	0.04
150.0	31	0.25	0.04	150.0	32	0.26	0.04	150.0	33	0.27	0.04
150.0	34	0.27	0.04	150.0	35	0.27	0.04	150.0	36	0.27	0.04
150.0	37	0.26	0.04	150.0	38	0.26	0.04	150.0	39	0.25	0.04
46	40 1	0.24 0.17	0.04 0.03	150.0 150.0	2	0.18	0.03	150.0	3	0.19	0.03
150.0	4	0.17	0.03	150.0	5	0.10	0.03	150.0	6	0.19	0.03
150.0	7	0.24	0.03	150.0	8	0.25	0.03	150.0	9	0.25	0.03
150.0	10	0.24	0.04	150.0	11	0.23	0.04	150.0	12	0.25	0.04
150.0	13	0.24	0.04	150.0	14	0.23	0.04	150.0	15	0.23	0.04
150.0	16	0.24	0.04	150.0		0.19		150.0	18		0.03
150.0	19	0.22	0.03	150.0	17 20	0.19	0.03	150.0	21	0.21 0.21	0.03
150.0	22	0.20	0.03	150.0	23	0.21	0.03	150.0	24	0.21	0.03
150.0	25	0.21	0.03	150.0	26	0.20	0.03	150.0	27	0.21	0.03
150.0	28	0.24	0.04	150.0	29	0.26	0.03	150.0	30	0.25	0.04
150.0	31	0.27	0.04	150.0	32	0.20	0.04	150.0	33	0.27	0.04
150.0	34	0.27	0.04	150.0	35	0.27	0.04	150.0	36	0.27	0.04
150.0	37	0.25	0.04	150.0	38	0.24	0.04	150.0	39	0.23	0.04
150.0	40	0.23	0.04	150.0	30	0.24	0.04	130.0	39	0.23	0.03
47 150.0	1	0.16	0.03	150.0	2	0.17	0.03	150.0	3	0.19	0.03
	4	0.20	0.03	150.0	5	0.21	0.03	150.0	6	0.23	0.03
150.0	7	0.24	0.04	150.0	8	0.25	0.04	150.0	9	0.26	0.04
150.0	10	0.26	0.04	150.0	11	0.26	0.04	150.0	12	0.26	0.04
150.0	13	0.25	0.04	150.0	14	0.24	0.04	150.0	15	0.16	0.02
150.0	16	0.23	0.03	150.0	17	0.18	0.03	150.0	18	0.22	0.03
150.0	19	0.19	0.03	150.0	20	0.22	0.03	150.0	21	0.20	0.03
150.0											

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	22	0.22	0.03	150.0	23	0.22	0.03	150.0	24	0.22	0.03
150.0	25	0.23	0.03	150.0	26	0.21	0.03	150.0	27	0.24	0.04
150.0	28	0.25	0.04	150.0	29	0.25	0.04	150.0	30	0.26	0.04
150.0	31	0.27	0.04	150.0	32	0.27	0.04	150.0	33	0.27	0.04
150.0	34	0.27	0.04	150.0	35	0.27	0.04	150.0	36	0.26	0.04
150.0	37	0.26	0.04	150.0	38	0.24	0.04	150.0	39	0.23	0.03
48	40 1	0.22 0.23	0.03 0.03	150.0 150.0	2	0.24	0.04	150.0	3	0.24	0.04
150.0	4	0.25	0.04	150.0	5	0.25	0.04	150.0	6	0.26	0.04
150.0	7	0.25	0.04	150.0	8	0.25	0.04	150.0	9	0.24	0.04
150.0	10	0.23	0.03	150.0	11	0.22	0.03	150.0	12	0.21	0.03
150.0	13	0.19	0.03	150.0	14	0.18	0.03	150.0	15	0.21	0.03
150.0	16	0.17	0.03	150.0	17	0.21	0.03	150.0	18	0.19	0.03
150.0	19	0.21	0.03	150.0	20	0.20	0.03	150.0	21	0.20	0.03
150.0	22	0.21	0.03	150.0	23	0.20	0.03	150.0	24	0.23	0.03
150.0	25	0.19	0.03	150.0	26	0.24	0.04	150.0	27	0.20	0.03
150.0	28	0.21	0.03	150.0	29	0.23	0.03	150.0	30	0.24	0.04
150.0	31	0.25	0.04	150.0	32	0.26	0.04	150.0	33	0.26	0.04
150.0	34	0.27	0.04	150.0	35	0.27	0.04	150.0	36	0.27	0.04
150.0	37	0.27	0.04	150.0	38	0.26	0.04	150.0	39	0.26	0.04
150.0	40	0.25	0.04	150.0							
49 150.0	1	0.24	0.04	150.0	2	0.25	0.04	150.0	3	0.26	0.04
450.0	4	0.26	0.04	150.0	5	0.26	0.04	150.0	6	0.26	0.04
150.0	_										
150.0	7	0.25	0.04	150.0	8	0.24	0.04	150.0	9	0.23	0.03
	10	0.25 0.21	0.04 0.03	150.0 150.0	8 11	0.24 0.20	0.04 0.03	150.0 150.0	12	0.23 0.19	0.03
150.0	10 13	0.25 0.21 0.17	0.04 0.03 0.03	150.0 150.0 150.0	8 11 14	0.24 0.20 0.16	0.04 0.03 0.02	150.0 150.0 150.0	12 15	0.23 0.19 0.23	0.03
150.0 150.0	10 13 16	0.25 0.21 0.17 0.16	0.04 0.03 0.03 0.02	150.0 150.0 150.0 150.0	8 11 14 17	0.24 0.20 0.16 0.22	0.04 0.03 0.02 0.03	150.0 150.0 150.0 150.0	12 15 18	0.23 0.19 0.23 0.18	0.03 0.03 0.03
150.0 150.0 150.0	10 13 16 19	0.25 0.21 0.17 0.16 0.22	0.04 0.03 0.03 0.02 0.03	150.0 150.0 150.0 150.0 150.0	8 11 14 17 20	0.24 0.20 0.16 0.22 0.19	0.04 0.03 0.02 0.03 0.03	150.0 150.0 150.0 150.0 150.0	12 15 18 21	0.23 0.19 0.23 0.18 0.22	0.03 0.03 0.03 0.03
150.0 150.0 150.0 150.0	10 13 16 19 22	0.25 0.21 0.17 0.16 0.22 0.20	0.04 0.03 0.03 0.02 0.03 0.03	150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23	0.24 0.20 0.16 0.22 0.19 0.22	0.04 0.03 0.02 0.03 0.03	150.0 150.0 150.0 150.0 150.0	12 15 18 21 24	0.23 0.19 0.23 0.18 0.22 0.22	0.03 0.03 0.03 0.03 0.03
150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25	0.25 0.21 0.17 0.16 0.22 0.20	0.04 0.03 0.03 0.02 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26	0.24 0.20 0.16 0.22 0.19 0.22 0.23	0.04 0.03 0.02 0.03 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27	0.23 0.19 0.23 0.18 0.22 0.22	0.03 0.03 0.03 0.03 0.03
150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28	0.25 0.21 0.17 0.16 0.22 0.20 0.21	0.04 0.03 0.03 0.02 0.03 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24	0.04 0.03 0.02 0.03 0.03 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30	0.23 0.19 0.23 0.18 0.22 0.22 0.22	0.03 0.03 0.03 0.03 0.03 0.03
150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26	0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27	0.03 0.03 0.03 0.03 0.03 0.03 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27	0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32 35	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33 36	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27 0.27	0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34 37	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27 0.26	0.04 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27	0.03 0.03 0.03 0.03 0.03 0.03 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27	0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32 35	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33 36	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27 0.27	0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34 37 40	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27 0.26 0.24	0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32 35 38	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27 0.27	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33 36 39	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27 0.27	0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34 37 40 1	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27 0.26 0.24 0.18	0.04 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32 35 38	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27 0.27 0.25	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33 36 39	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27 0.27 0.25	0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34 37 40 1	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27 0.26 0.24 0.18 0.22	0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32 35 38 2 5	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27 0.25 0.19 0.23	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33 36 39	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27 0.27 0.25 0.20 0.24	0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	10 13 16 19 22 25 28 31 34 37 40 1 4 7	0.25 0.21 0.17 0.16 0.22 0.20 0.21 0.23 0.26 0.27 0.26 0.24 0.18 0.22 0.25	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	8 11 14 17 20 23 26 29 32 35 38 2 5 8	0.24 0.20 0.16 0.22 0.19 0.22 0.23 0.24 0.27 0.25 0.19 0.23 0.25	0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.03	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	12 15 18 21 24 27 30 33 36 39 3 6	0.23 0.19 0.23 0.18 0.22 0.22 0.22 0.26 0.27 0.27 0.25 0.20 0.24 0.25	0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	19	0.20	0.03	150.0	20	0.21	0.03	150.0	21	0.22	0.03
150.0	22	0.20	0.03	150.0	23	0.23	0.03	150.0	24	0.20	0.03
150.0	25	0.24	0.04	150.0	26	0.19	0.03	150.0	27	0.25	0.04
150.0	28	0.26	0.04	150.0	29	0.26	0.04	150.0	30	0.27	0.04
150.0	31	0.27	0.04	150.0	32	0.27	0.04	150.0	33	0.27	0.04
150.0	34	0.26	0.04	150.0	35	0.26	0.04	150.0	36	0.25	0.04
150.0	37	0.24	0.04	150.0	38	0.23	0.03	150.0	39	0.21	0.03
150.0	40	0.20	0.03	150.0							
51 150.0	1	0.17	0.03	150.0	2	0.18	0.03	150.0	3	0.20	0.03
150.0	4	0.21	0.03	150.0	5	0.23	0.03	150.0	6	0.24	0.04
150.0	7	0.25	0.04	150.0	8	0.25	0.04	150.0	9	0.26	0.04
150.0	10	0.26	0.04	150.0	11	0.26	0.04	150.0	12	0.25	0.04
150.0	13	0.25	0.04	150.0	14	0.24	0.04	150.0	15	0.16	0.02
150.0	16	0.23	0.03	150.0	17	0.18	0.03	150.0	18	0.22	0.03
150.0	19	0.19	0.03	150.0	20	0.22	0.03	150.0	21	0.20	0.03
150.0	22	0.21	0.03	150.0	23	0.22	0.03	150.0	24	0.21	0.03
150.0	25	0.23	0.03	150.0	26	0.20	0.03	150.0	27	0.24	0.04
150.0	28	0.25	0.04	150.0	29	0.26	0.04	150.0	30	0.26	0.04
150.0	31	0.27	0.04	150.0	32	0.27	0.04	150.0	33	0.27	0.04
150.0	34	0.27	0.04	150.0	35	0.26	0.04	150.0	36	0.25	0.04
150.0	37	0.24	0.04	150.0	38	0.23	0.03	150.0	39	0.22	0.03
52	40 1	0.21 0.23	0.03 0.03	150.0 150.0	2	0.24	0.04	150.0	3	0.25	0.04
150.0	4	0.26	0.04	150.0	5	0.24	0.04	150.0	6	0.25	0.04
150.0	7	0.25		150.0	8	0.24		150.0	9	0.23	
150.0	10	0.23	0.04	150.0	11	0.24	0.04	150.0	12	0.23	0.03
150.0	13	0.22	0.03	150.0	14	0.21	0.03	150.0	15	0.19	0.03
150.0	16	0.18	0.03	150.0	17	0.17	0.03	150.0	18	0.22	0.03
150.0	19	0.17	0.03	150.0	20	0.21	0.03	150.0	21	0.19	0.03
150.0	22	0.21	0.03	150.0	23	0.20	0.03	150.0	24	0.21	0.03
150.0	25	0.21	0.03	150.0	26	0.20	0.03	150.0	27	0.23	0.03
150.0	28	0.20	0.03	150.0	29	0.24	0.04	150.0	30	0.25	0.03
150.0	31	0.26	0.03	150.0	32	0.24	0.04	150.0	33	0.27	0.04
150.0	34	0.27	0.04	150.0	35	0.27	0.04	150.0	36	0.27	0.04
150.0	37	0.27	0.04	150.0	38	0.27	0.04	150.0	39	0.26	0.04
150.0					30	0.20	0.04	150.0	39	0.20	0.04
53	40 1	0.25 0.26	0.04 0.04	150.0 150.0	2	0.32	0.05	150.0	3	0.37	0.06
150.0	4	0.42	0.06	150.0	5	0.46	0.07	150.0	6	0.49	0.07
150.0	7	0.51	0.08	150.0	8	0.52	0.08	150.0	9	0.51	0.08
150.0	10	0.49	0.07	150.0	11	0.46	0.07	150.0	12	0.41	0.06
150.0											

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0 150.0 150.0 150.0	13 16 19 22 25	0.35 0.19 0.16 0.21	0.05 0.03 0.02	150.0 150.0 150.0	14 17	0.28 0.18	0.04 0.03	150.0 150.0	15 18	0.21 0.20	0.03
150.0 150.0	19 22	0.16			17	0.18	0.03	150.0	18	0.20	0.03
150.0	22		0.02	150.0							
		0.21		100.0	20	0.21	0.03	150.0	21	0.15	0.02
.00.0	25		0.03	150.0	23	0.14	0.02	150.0	24	0.22	0.03
150.0		0.13	0.02	150.0	26	0.23	0.03	150.0	27	0.21	0.03
150.0	28	0.28	0.04	150.0	29	0.34	0.05	150.0	30	0.39	0.06
150.0	31	0.44	0.07	150.0	32	0.48	0.07	150.0	33	0.50	80.0
150.0	34	0.52	0.08	150.0	35	0.51	0.08	150.0	36	0.50	0.07
150.0	37	0.47	0.07	150.0	38	0.42	0.06	150.0	39	0.38	0.06
54	40 1	0.31 0.22	0.05 0.03	150.0 150.0	2	0.29	0.04	150.0	3	0.35	0.05
150.0	4	0.40	0.06	150.0	5	0.45	0.07	150.0	6	0.48	0.07
150.0	7	0.51	0.08	150.0	8	0.51	0.08	150.0	9	0.51	0.08
150.0	10	0.49	0.07	150.0	11	0.46	0.07	150.0	12	0.42	0.06
150.0	13	0.36	0.05	150.0	14	0.30	0.05	150.0	15	0.14	0.02
150.0	16	0.22	0.03	150.0	17	0.15	0.02	150.0	18	0.21	0.03
150.0	19	0.16	0.02	150.0	20	0.21	0.03	150.0	21	0.17	0.03
150.0	22	0.20	0.03	150.0	23	0.19	0.03	150.0	24	0.19	0.03
150.0	25	0.21	0.03	150.0	26	0.18	0.03	150.0	27	0.27	0.04
150.0	28	0.32	0.05	150.0	29	0.38	0.06	150.0	30	0.42	0.06
150.0	31	0.46	0.07	150.0	32	0.49	0.07	150.0	33	0.51	0.08
150.0	34	0.51	0.08	150.0	35	0.50	0.08	150.0	36	0.48	0.07
150.0	37	0.44	0.07	150.0	38	0.40	0.06	150.0	39	0.34	0.05
150.0	40	0.27	0.04	150.0							
55 150.0	1	0.22	0.03	150.0	2	0.29	0.04	150.0	3	0.35	0.05
150.0	4	0.40	0.06	150.0	5	0.45	0.07	150.0	6	0.48	0.07
150.0	7	0.50	0.08	150.0	8	0.51	0.08	150.0	9	0.51	80.0
150.0	10	0.49	0.07	150.0	11	0.46	0.07	150.0	12	0.42	0.06
150.0	13	0.37	0.06	150.0	14	0.31	0.05	150.0	15	0.15	0.02
150.0	16	0.23	0.03	150.0	17	0.15	0.02	150.0	18	0.22	0.03
150.0	19	0.16	0.02	150.0	20	0.21	0.03	150.0	21	0.17	0.03
150.0	22	0.20	0.03	150.0	23	0.18	0.03	150.0	24	0.19	0.03
150.0	25	0.20	0.03	150.0	26	0.18	0.03	150.0	27	0.26	0.04
150.0	28	0.32	0.05	150.0	29	0.37	0.06	150.0	30	0.42	0.06
150.0	31	0.46	0.07	150.0	32	0.49	0.07	150.0	33	0.51	0.08
150.0	34	0.51	0.08	150.0	35	0.51	0.08	150.0	36	0.48	0.07
150.0	37	0.45	0.07	150.0	38	0.39	0.06	150.0	39	0.34	0.05
56	40 1	0.27 0.26	0.04 0.04	150.0 150.0	2	0.31	0.05	150.0	3	0.37	0.06
150.0	4	0.42	0.06	150.0	5	0.46	0.07	150.0	6	0.49	0.07
150.0	7	0.51	0.08	150.0	8	0.52	0.08	150.0	9	0.51	0.08

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	10	0.49	0.07	150.0	11	0.46	0.07	150.0	12	0.41	0.06
150.0	13	0.35	0.05	150.0	14	0.28	0.04	150.0	15	0.19	0.03
150.0	16	0.19	0.03	150.0	17	0.17	0.03	150.0	18	0.20	0.03
150.0	19	0.16	0.02	150.0	20	0.21	0.03	150.0	21	0.15	0.02
150.0	22	0.22	0.03	150.0	23	0.14	0.02	150.0	24	0.22	0.03
150.0	25	0.14	0.02	150.0	26	0.24	0.04	150.0	27	0.21	0.03
150.0	28	0.28	0.04	150.0	29	0.34	0.05	150.0	30	0.39	0.06
150.0	31	0.44	0.07	150.0	32	0.48	0.07	150.0	33	0.50	0.08
150.0	34	0.51	0.08	150.0	35	0.51	0.08	150.0	36	0.50	0.07
150.0	37	0.47	0.07	150.0	38	0.42	0.06	150.0	39	0.38	0.06
150.0	40	0.32	0.05	150.0							
57 150.0	1	0.27	0.04	150.0	2	0.32	0.05	150.0	3	0.38	0.06
150.0	4	0.42	0.06	150.0	5	0.46	0.07	150.0	6	0.49	0.07
150.0	7	0.51	0.08	150.0	8	0.51	0.08	150.0	9	0.50	0.08
150.0	10	0.48	0.07	150.0	11	0.45	0.07	150.0	12	0.40	0.06
150.0	13	0.34	0.05	150.0	14	0.27	0.04	150.0	15	0.21	0.03
150.0	16	0.18	0.03	150.0	17	0.19	0.03	150.0	18	0.19	0.03
150.0	19	0.17	0.03	150.0	20	0.20	0.03	150.0	21	0.16	0.02
150.0	22	0.20	0.03	150.0	23	0.15	0.02	150.0	24	0.21	0.03
150.0	25	0.14	0.02	150.0	26	0.23	0.03	150.0	27	0.22	0.03
150.0	28	0.29	0.04	150.0	29	0.35	0.05	150.0	30	0.40	0.06
150.0	31	0.45	0.07	150.0	32	0.48	0.07	150.0	33	0.51	0.08
150.0	34	0.51	0.08	150.0	35	0.51	0.08	150.0	36	0.49	0.07
150.0	37	0.46	0.07	150.0	38	0.41	0.06	150.0	39	0.37	0.06
58	40 1	0.30 0.21	0.05 0.03	150.0 150.0	2	0.28	0.04	150.0	3	0.34	0.05
150.0	4	0.39	0.06	150.0	5	0.44	0.07	150.0	6	0.48	0.07
150.0	7	0.50	0.08	150.0	8	0.52	0.08	150.0	9	0.51	0.08
150.0	10	0.50	0.07	150.0	11	0.47	0.07	150.0	12	0.43	0.06
150.0	13	0.37	0.06	150.0	14	0.31	0.05	150.0	15	0.13	0.02
150.0	16	0.23	0.03	150.0	17	0.14	0.02	150.0	18	0.22	0.03
150.0	19	0.15	0.02	150.0	20	0.22	0.03	150.0	21	0.16	0.02
150.0	22	0.21	0.03	150.0	23	0.18	0.03	150.0	24	0.20	0.03
150.0	25	0.21	0.03	150.0	26	0.19	0.03	150.0	27	0.26	0.04
150.0	28	0.32	0.05	150.0	29	0.37	0.06	150.0	30	0.42	0.06
150.0	31	0.46	0.07	150.0	32	0.49	0.07	150.0	33	0.51	0.08
150.0	34	0.52	0.08	150.0	35	0.51	0.08	150.0	36	0.49	0.07
150.0	37	0.45	0.07	150.0	38	0.40	0.06	150.0	39	0.35	0.05
150.0	40	0.28	0.04	150.0	0	0.00	0.04	150.0	2	0.04	0.05
59 150.0	1	0.21	0.03	150.0	2	0.28	0.04	150.0	3	0.34	0.05

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	4	0.39	0.06	150.0	5	0.44	0.07	150.0	6	0.48	0.07
150.0	7	0.50	0.08	150.0	8	0.51	80.0	150.0	9	0.51	0.08
150.0	10	0.50	0.07	150.0	11	0.47	0.07	150.0	12	0.43	0.06
150.0	13	0.37	0.06	150.0	14	0.31	0.05	150.0	15	0.14	0.02
150.0	16	0.24	0.04	150.0	17	0.14	0.02	150.0	18	0.22	0.03
150.0	19	0.15	0.02	150.0	20	0.22	0.03	150.0	21	0.16	0.02
150.0	22	0.21	0.03	150.0	23	0.17	0.03	150.0	24	0.20	0.03
150.0	25	0.19	0.03	150.0	26	0.19	0.03	150.0	27	0.26	0.04
150.0	28	0.31	0.05	150.0	29	0.37	0.06	150.0	30	0.42	0.06
150.0	31	0.46	0.07	150.0	32	0.49	0.07	150.0	33	0.51	80.0
150.0	34	0.52	0.08	150.0	35	0.51	0.08	150.0	36	0.49	0.07
150.0	37	0.45	0.07	150.0	38	0.40	0.06	150.0	39	0.35	0.05
60	40 1	0.28 0.26	0.04 0.04	150.0 150.0	2	0.32	0.05	150.0	3	0.37	0.06
150.0	4	0.42	0.06	150.0	5	0.46	0.07	150.0	6	0.49	0.07
150.0	7	0.51	0.08	150.0	8	0.51	0.08	150.0	9	0.51	0.08
150.0	10	0.48	0.07	150.0	11	0.45	0.07	150.0	12	0.40	0.06
150.0	13	0.34	0.05	150.0	14	0.27	0.04	150.0	15	0.20	0.03
150.0	16	0.18	0.03	150.0	17	0.18	0.03	150.0	18	0.19	0.03
150.0	19	0.17	0.03	150.0	20	0.20	0.03	150.0	21	0.16	0.02
150.0	22	0.21	0.03	150.0	23	0.15	0.02	150.0	24	0.22	0.03
150.0	25	0.15	0.02	150.0	26	0.23	0.04	150.0	27	0.22	0.03
150.0	28	0.29	0.04	150.0	29	0.35	0.05	150.0	30	0.40	0.06
150.0	31	0.45	0.07	150.0	32	0.48	0.07	150.0	33	0.50	0.08
150.0	34	0.51	0.08	150.0	35	0.51	0.08	150.0	36	0.49	0.07
150.0	37	0.46	0.07	150.0	38	0.42	0.06	150.0	39	0.37	0.06
150.0	40	0.31	0.05	150.0	2	0.00	0.05	450.0	2	0.40	0.00
61 150.0	1 4	0.31	0.05	150.0	2	0.36	0.05	150.0	3	0.42	0.06
150.0	7	0.46 0.51	0.07	150.0 150.0	5 8	0.49 0.50	0.07	150.0 150.0	6 9	0.51 0.48	0.08
150.0	10	0.45	0.08	150.0	11	0.30	0.06	150.0	12	0.46	0.07
150.0	13	0.43	0.07	150.0	14	0.40	0.03	150.0	15	0.33	0.03
150.0	16	0.29	0.04	150.0	17	0.22	0.03	150.0	18	0.23	0.03
150.0	19	0.13	0.02	150.0	20	0.22	0.03	150.0	21	0.13	0.02
150.0											
150.0	22	0.17	0.03	150.0	23	0.19	0.03	150.0	24	0.18	0.03
150.0	25	0.18	0.03	150.0	26	0.20	0.03	150.0	27	0.27	0.04
150.0	28	0.33	0.05	150.0	29	0.40	0.06	150.0	30	0.45	0.07
150.0	31 34	0.48 0.51	0.07	150.0 150.0	32 35	0.51 0.49	0.08	150.0 150.0	33 36	0.51 0.46	0.08
150.0	37	0.51	0.08	150.0	38	0.49	0.07	150.0	39	0.46	0.07
150.0	31	U.4Z	0.00	150.0	30	0.37	0.00	100.0	38	0.32	0.05

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

62	40 1	0.27 0.28	0.04 0.04	150.0 150.0	2	0.35	0.05	150.0	3	0.41	0.06
150.0	4	0.46	0.07	150.0	5	0.49	0.07	150.0	6	0.51	0.08
150.0	7	0.52	0.08	150.0	8	0.51	0.08	150.0	9	0.49	0.07
150.0	10	0.46	0.07	150.0	11	0.42	0.06	150.0	12	0.37	0.06
150.0	13	0.31	0.05	150.0	14	0.26	0.04	150.0	15	0.19	0.03
150.0	16	0.19	0.03	150.0	17	0.20	0.03	150.0	18	0.17	0.03
150.0	19	0.21	0.03	150.0	20	0.16	0.02	150.0	21	0.22	0.03
150.0	22	0.15	0.02	150.0	23	0.22	0.03	150.0	24	0.14	0.02
150.0	25	0.24	0.04	150.0	26	0.14	0.02	150.0	27	0.31	0.05
150.0	28	0.37	0.06	150.0	29	0.43	0.06	150.0	30	0.47	0.07
150.0	31	0.50	0.07	150.0	32	0.51	0.08	150.0	33	0.51	0.08
150.0	34	0.50	0.08	150.0	35	0.48	0.07	150.0	36	0.44	0.07
150.0	37	0.39	0.06	150.0	38	0.34	0.05	150.0	39	0.28	0.04
150.0	40	0.22	0.03	150.0							
63 150.0	1	0.28	0.04	150.0	2	0.35	0.05	150.0	3	0.41	0.06
150.0	4	0.45	0.07	150.0	5	0.49	0.07	150.0	6	0.51	0.08
150.0	7	0.52	0.08	150.0	8	0.51	80.0	150.0	9	0.49	0.07
150.0	10	0.46	0.07	150.0	11	0.42	0.06	150.0	12	0.37	0.06
150.0	13	0.32	0.05	150.0	14	0.26	0.04	150.0	15	0.19	0.03
150.0	16	0.21	0.03	150.0	17	0.20	0.03	150.0	18	0.18	0.03
150.0	19	0.21	0.03	150.0	20	0.16	0.02	150.0	21	0.22	0.03
150.0	22	0.15	0.02	150.0	23	0.22	0.03	150.0	24	0.14	0.02
150.0	25	0.23	0.03	150.0	26	0.14	0.02	150.0	27	0.31	0.05
150.0	28	0.37	0.06	150.0	29	0.42	0.06	150.0	30	0.47	0.07
150.0	31	0.50	0.07	150.0	32	0.51	0.08	150.0	33	0.52	0.08
150.0	34	0.50	0.08	150.0	35	0.48	0.07	150.0	36	0.44	0.07
150.0	37	0.39	0.06	150.0	38	0.34	0.05	150.0	39	0.28	0.04
64	40 1	0.21 0.30	0.03 0.04	150.0 150.0	2	0.36	0.05	150.0	3	0.42	0.06
150.0	4	0.46	0.07	150.0	5	0.49	0.07	150.0	6	0.51	0.08
150.0	7	0.51	0.08	150.0	8	0.51	0.08	150.0	9	0.48	0.07
150.0	10	0.45	0.07	150.0	11	0.40	0.06	150.0	12	0.35	0.05
150.0	13	0.29	0.04	150.0	14	0.22	0.03	150.0	15	0.22	0.03
150.0	16	0.15	0.02	150.0	17	0.21	0.03	150.0	18	0.15	0.02
150.0	19	0.21	0.03	150.0	20	0.16	0.02	150.0	21	0.20	0.03
150.0	22	0.17	0.03	150.0	23	0.19	0.03	150.0	24	0.19	0.03
150.0	25	0.18	0.03	150.0	26	0.21	0.03	150.0	27	0.27	0.04
150.0	28	0.34	0.05	150.0	29	0.40	0.06	150.0	30	0.45	0.07
150.0	31	0.48	0.07	150.0	32	0.50	0.08	150.0	33	0.51	0.08
150.0	34	0.51	0.08	150.0	35	0.49	0.07	150.0	36	0.46	0.07

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

150.0	37	0.42	0.06	150.0	38	0.38	0.06	150.0	39	0.33	0.05
150.0 65	40 1	0.27 0.31	0.04 0.05	150.0 150.0	2	0.37	0.06	150.0	3	0.43	0.06
150.0	4	0.47	0.07	150.0	5	0.50	0.07	150.0	6	0.51	0.08
150.0	7	0.51	0.08	150.0	8	0.50	0.08	150.0	9	0.48	0.07
150.0	10	0.44	0.07	150.0	11	0.40	0.06	150.0	12	0.34	0.05
150.0	13	0.28	0.04	150.0	14	0.40	0.03	150.0	15	0.24	0.04
150.0	16	0.20	0.04	150.0	17	0.21	0.03	150.0	18	0.14	0.04
150.0	19	0.14	0.02	150.0	20	0.22	0.03	150.0	21	0.14	0.02
150.0	22	0.22	0.03	150.0	23	0.13	0.02	150.0	24	0.21	0.03
150.0											
150.0	25	0.19	0.03	150.0	26	0.20	0.03	150.0	27	0.28	0.04
150.0	28	0.35	0.05	150.0	29	0.41	0.06	150.0	30	0.46	0.07
150.0	31	0.49	0.07	150.0	32	0.51	0.08	150.0	33	0.52	80.0
150.0	34	0.51	0.08	150.0	35	0.49	0.07	150.0	36	0.46	0.07
150.0	37	0.42	0.06	150.0	38	0.37	0.05	150.0	39	0.32	0.05
66	40 1	0.26 0.27	0.04 0.04	150.0 150.0	2	0.33	0.05	150.0	3	0.40	0.06
150.0	4	0.45	0.07	150.0	5	0.48	0.07	150.0	6	0.51	0.08
150.0	7	0.51	0.08	150.0	8	0.51	0.08	150.0	9	0.49	0.07
150.0	10	0.46	0.07	150.0	11	0.42	0.06	150.0	12	0.38	0.06
150.0	13	0.32	0.05	150.0	14	0.26	0.04	150.0	15	0.18	0.03
150.0	16	0.20	0.03	150.0	17	0.19	0.03	150.0	18	0.18	0.03
150.0	19	0.20	0.03	150.0	20	0.17	0.03	150.0	21	0.21	0.03
150.0	22	0.16	0.02	150.0	23	0.22	0.03	150.0	24	0.15	0.02
150.0	25	0.23	0.03	150.0	26	0.15	0.02	150.0	27	0.31	0.05
150.0	28	0.36	0.05	150.0	29	0.42	0.06	150.0	30	0.46	0.07
150.0	31	0.49	0.07	150.0	32	0.51	0.08	150.0	33	0.51	0.08
150.0	34	0.50	0.08	150.0	35	0.48	0.07	150.0	36	0.45	0.07
150.0	37	0.40	0.06	150.0	38	0.35	0.05	150.0	39	0.29	0.04
150.0	40	0.23	0.03	150.0							
67 150.0	1	0.27	0.04	150.0	2	0.34	0.05	150.0	3	0.40	0.06
150.0	4	0.45	0.07	150.0	5	0.48	0.07	150.0	6	0.50	0.08
150.0	7	0.51	0.08	150.0	8	0.51	0.08	150.0	9	0.49	0.07
150.0	10	0.46	0.07	150.0	11	0.42	0.06	150.0	12	0.38	0.06
150.0	13	0.32	0.05	150.0	14	0.27	0.04	150.0	15	0.18	0.03
150.0	16	0.21	0.03	150.0	17	0.19	0.03	150.0	18	0.19	0.03
150.0	19	0.20	0.03	150.0	20	0.17	0.03	150.0	21	0.21	0.03
150.0	22	0.16	0.02	150.0	23	0.21	0.03	150.0	24	0.15	0.02
150.0	25	0.22	0.03	150.0	26	0.15	0.02	150.0	27	0.30	0.04
150.0	28	0.36	0.05	150.0	29	0.42	0.06	150.0	30	0.46	0.07
100.0											

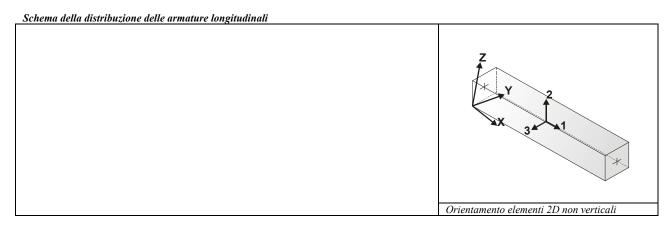
Prog. e D.L. Strutturale: Ing. Enrico Tasselli

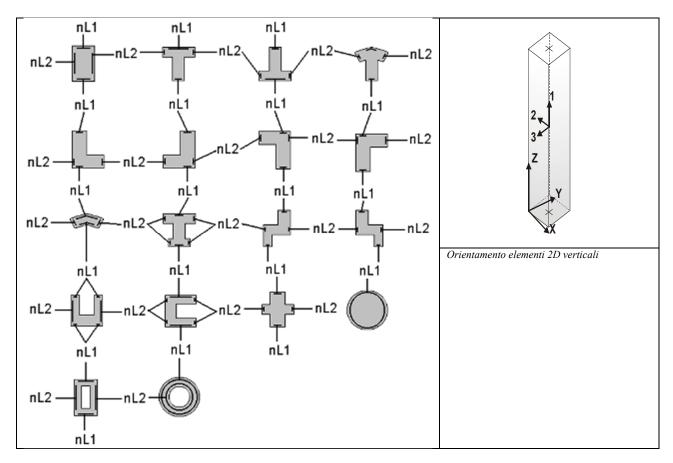
Cmb	1000	0 etaT/h 0.52									
130.0	40	0.27	0.04	150.0							
150.0	37	0.42	0.06	150.0	38	0.37	0.06	150.0	39	0.32	0.05
150.0	34	0.51	0.08	150.0	35	0.49	0.07	150.0	36	0.46	0.07
150.0	31	0.49	0.07	150.0	32	0.51	0.08	150.0	33	0.52	0.08
150.0	28	0.35	0.05	150.0	29	0.41	0.06	150.0	30	0.45	0.07
150.0	25	0.19	0.03	150.0	26	0.21	0.03	150.0	27	0.28	0.04
150.0	22	0.16	0.02	150.0	23	0.20	0.03	150.0	24	0.18	0.03
150.0	19	0.22	0.03	150.0	20	0.15	0.02	150.0	21	0.21	0.03
150.0	16	0.13	0.02	150.0	17	0.22	0.03	150.0	18	0.14	0.02
150.0	13	0.28	0.04	150.0	14	0.21	0.03	150.0	15	0.23	0.03
150.0 150.0	10	0.44	0.07	150.0	11	0.40	0.06	150.0	12	0.34	0.05
	7	0.52	0.08	150.0	8	0.50	0.08	150.0	9	0.48	0.07
150.0 150.0	4	0.47	0.07	150.0	5	0.50	0.07	150.0	6	0.51	0.08
68	40 1	0.22 0.31	0.03 0.05	150.0 150.0	2	0.37	0.06	150.0	3	0.42	0.06
150.0	37	0.40	0.06	150.0	38	0.35	0.05	150.0	39	0.29	0.04
150.0	34	0.51	0.08	150.0	35	0.48	0.07	150.0	36	0.45	0.07
150.0	31	0.49	0.07	150.0	32	0.51	0.08	150.0	33	0.51	0.08

VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle **Ok** o NV.


Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (S.L.) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.


Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (T.A.) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

Simbologia adottata nelle tabelle di verifica Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

er to recigione ag	is 612. Her prinser t e presente una tabetta con i simboli di seguito desertiti.
MPXY	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ^* : valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

Per le verifiche alla G.R. dei pilastri è presente una tabella con i simboli di seguito descritti:

Pilas.	numero identificativo dell'elemento D2 pilastro
sovr. Xi (Xf)	Verifica sovraresistenza come da formula 7.4.4 in direzione X, alla base (i) ed alla sommità (f): rapporto tra i momenti
	resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del $\gamma_{ m kd}$ adottato
sovr. Yi (Yf)	Verifica sovraresistenza come da formula 7.4.4 in direzione Y, alla base (i) ed alla sommità (f): rapporto tra i momenti
	resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del $\gamma_{ m kd}$ adottato
M 2-2 i (f)	Valore del momento resistente 2-2 alla base (i) ed alla sommità (f) con massimo momento in presenza dello sforzo normale
	di calcolo
M 3-3 i (f)	Valore del momento resistente 3-3 alla base (i) ed alla sommità (f) con massimo momento in presenza dello sforzo normale di
	calcolo
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M2-2 (M3-3)	Valore del taglio generato dai momenti resistenti 2-2 (3-3)

Per le verifiche dei dettagli costruttivi per la duttilità è presente una tabella con i simboli di seguito descritti:

(Non presente nel caso di comportamento strutturale non dissipativo)

Pilas	Numero identificativo D2 pilastro
ni	Sforzo assiale adimensionalizzato di progetto relativo alla combinazione sismica SLV
alfaomega	Prodotto tra il coefficiente di efficacia del confinamento e il rapporto meccanico dell'armatura trasversale di confinamento all'interno del nodo
V.7.4.29 2-2 (3-3)	Rapporto tra la domanda di staffe minima nel nodo e il rapporto meccanico dell'armatura trasversale di confinamento inserito all'interno del nodo in direzione 2 (3)

V. 7.4.29 Stato	Codici relativi all'esito della verifica 7.4.29
dmu_fi 2-2 (3-3)	Domanda in duttilità di curvatura in direzione 2 (3)
cmu_fi 2-2 (3-3)	Capacità in duttilità di curvatura in direzione 2 (3)
V. dutt. 2-2 (3-3)	Rapporto tra la domanda in duttilità di curvatura e la capacità in duttilità di curvatura in direzione 2 (3)

Per le verifiche nodi trave-pilastro di elementi nuovi è presente una tabella con i simboli di seguito descritti:

Nodo	Numero identificativo del nodo trave-pilastro
Stato	Esito delle verifiche
Pilastro	Numero identificativo D2 pilastro
Diam st	Diametro staffe nodo
Passo	Passo staffe nodo
n. br. 2 (3)	Numero braccia staffe per il taglio in direzione 2 (3)
Bj2 (3)	Larghezza effettiva del nodo per il taglio in direzione 2 (3)
Hjc2 (3)	Distanza tra le giaciture più esterne delle armature del pilastro per il taglio in direzione 2 (3)
V. 7.4.8	Rapporto tra il taglio Vjbd e il taglio resistente come da formula 7.4.8
V. Ash	Rapporto tra il passo staffe calcolato secondo il capitolo 7.4.4.3.1. e il passo staffe effattivamente inserita nel nodo. Nel caso di valore indica passo staffe utilizzato deriva dalle formule presenti nel paragrafo 7.4.4.3.1. Nel caso di valore minore di 1 il passo staffe utilizzato deriva del pilastro superiore o inferiore al nodo
7.4.10	Check passo staffe valutato in funzione della formula 7.4.10: SI il passo staffe è calcolato utilizzando la formula 7.4.10; NO il passo staffe è calcolato utilizzando le formule 7.4.11 e/o 7.4.12; NR calcolo passo staffe non richiesto;
Rif. comb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il nodo

Per le verifiche nodi trave-pilastro di elementi esistenti è presente una tabella con i simboli di seguito descritti:

Pilastro I	Numero identificativo D2 del pilastro inferiore.
Pilastro S	Numero identificativo D2 del pilastro superiore.
Nodo	Numero identificativo del nodo trave-pilastro.
SL cod	Stato limite di riferimento e relativo esito delle verifiche.
ver. (+)	Fattore di sicurezza nei riguardi della verifica di resistenza a compressione (verificato se ≤ 1.00).
V +	Azione di Taglio presente al di sopra del nodo nella verifica di resistenza a compressione.
V + afs	Sollecitazione di trazione presente nell' armatura longitudinale superiore della trave nella verifica di resistenza a compressione.
N +	Azione Assiale presente al di sopra del nodo nella verifica di resistenza a compressione.
ver. (-)	Fattore di sicurezza nei riguardi della verifica di resistenza a trazione (verificato se ≤ 1.00).
V -	Azione di Taglio presente al di sopra del nodo nella verifica di resistenza a trazione.
V - af s	Sollecitazione di trazione presente nell' armatura longitudinale superiore della trave nella verifica di resistenza a trazione.
N -	Azione Assiale presente al di sopra del nodo nella verifica di resistenza a trazione.
AreaV2	Area resistente del nodo in direzione 2 $(A_{l2}$ = b_{l2} * h_{lc2}).
AreaV3	Area resistente del nodo in direzione 3 $(A_{j3}$ = b_{j3} * h_{jc3}).
Rif. comb.	Combinazione (direzione) di riferimento nella verifica di trazione.

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

er të verijithe ugu 5	L. dene travi e presente una tabena con i simbon di seguno descritti.
$M_T Z P P$	Numero della travata (T), quota media (Z), n° pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)
Trave	numero identificativo dell'elemento D2
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche effettuate appresso descritte
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Af inf.	Area di armatura longitudinale posta all'intradosso
Af sup	Area di armatura longitudinale posta all'estradosso
Af long.	Area complessiva armatura longitudinale
x/d	rapporto tra posizione dell'asse neutro e altezza utile
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave
x/d V N/M Staffe V V/T cls	rapporto tra posizione dell'asse neutro e altezza utile Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva

Per le verifiche alla G.R. delle travi è presente una tabella con i simboli di seguito descritti:

Per le verifiche alla	G.K. dene travi e presente una tabena con i simbon ai seguno descriti:
Trave	numero identificativo dell'elemento D2 trave
M negativo i (f)	Valore del momento resistente negativo all' estremità iniziale i (finale f) della trave
M positivo i (f)	Valore del momento resistente positivo all' estremità iniziale i (finale f) della trave
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
VM- iM + f	Taglio generato dai momenti resistenti negativo i e positivo f
VM+iM-f	Taglio generato dai momenti resistenti positivo i e negativo f
VEd, min	Valore di taglio minimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
VEd, max	Valore di taglio massimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
Vr1	Valore di taglio come da formula 7.4.1 per armatura diagonale (solo per CD "A")
As	Area singolo ordine armature diagonali come da formula 7.4.2 (solo per CD "A")

Per le verifiche a taglio ciclico di travi e pilastri esistenti è presente una tabella con i simboli di seguito descritti:

Trave/Pilastro	Numero identificativo dell'elemento D2 trave/pilastro
V. SLV	Codice relativo all'esito delle verifiche
Nodo	Numero identificativo del nodo di verifica
Ver. VC	Fattore di sicurezza nei confronti della verifica a taglio ciclico (verificato se < 1.00)

Direz.	Direzione di verifica
Nfr	Valore di sforzo normale calcolato con fattore di comportamento fragile
V fr	Valore di taglio calcolato con fattore di comportamento fragile
Mfr	Valore di momento calcolato con fattore di comportamento fragile
N dutt	Valore di sforzo normale calcolato con fattore di comportamento duttile
LV	Lunghezza di taglio
Mud,pl	Parte plastica della domanda di duttilità
V cic	Resistenza a taglio in condizioni cicliche (C8.7.2.8)
Cmb	Riferimento combinazioni da cui si generano le verifiche più gravose

Per le verifiche alle T.A. di pilastri e travi è presente una tabella con i simboli di seguito descritti:

MPXY	Numero della pilastrata (P) e posizione in pianta (X,Y)
M TZPP	Numero della travata, quota media pilastrata iniziale e finale (nodo in assenza di pilastrata)
Pilas. o Trave	numero identificativo dell'elemento D2
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m); nella terza riga viene riportato il valore delle
	snellezze in direzione 2-2 e 3-3
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali
Quota	Ascissa del punto di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Armat. long.	Numero e diametro dei ferri di armatura longitudinale: ferri di vertice + ferri di lato (come da fig. precedente)
Af inf.	Area di armatura longitudinale posta all'intradosso della trave
Af sup	Area di armatura longitudinale posta all'estradosso della trave
Sc max	Massima tensione di compressione del calcestruzzo
Sc med	Massima tensione media di compressione del calcestruzzo
Sf max	Tensione massima nell'acciaio
staffe	Vengono riportati i dati del tratto di staffatura in cui cade la sezione di verifica; in particolare: numero dei bracci,
	diametro, passo, lunghezza tratto
Tau max	Tensione massima tangenziale nel cls
Rif. comb	Combinazioni in cui si generano i seguenti valori di tensione:
	Sc max, Sc med, Sf max, Tau max
AfV	area dell'armatura atta ad assorbire le azioni di taglio
AfT	area dell'armatura atta ad assorbire le azioni di torsione
Scorr. P	Scorrimento dei piegati
Af long.	Area del ferro longitudinale aggiuntivo per assorbire la torsione
	M P= 1 X=243.0 Y=-20.0

Pilas. cmb	Note	Stato	Quota	%Af	M_P= 1 M_P= 1 r. snell.	X=243.0 X=243.0 Armat. long.	Y=-20.0 Y=-20.0 V N/M	V N sis Staffe	e V V/T clsV	V/T acc Rif.
	=1,m=2	ok,ok	cm 0.0	0.96	0.29	4d16 0+0 d16	0.58	L=cn 0.203+3d6/20 L=150		0.50
	1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d16	0.41	0.203+3d6/20 L=150	0.38	0.50
Pilas. cmb	Note	Stato	Quota	%Af	M_P= 2 r. snell.	X=471.0 Armat. long.	Y=-20.0 V N/M	V N sis Staffe	e V V/T cls V	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.88	0.163+3d6/20 L=150	0.37	0.47
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.60	0.153+3d6/20 L=150	0.38	0.47
Pilas.	Note	Stato	Quota	%Af	M_P= 3 r. snell.	X=699.0 Armat. long.	Y=-20.0 V N/M	V N sis Staff	e V V/T cls V	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.29	4d16 0+0 d16	0.91	0.153+3d6/20 L=150	0.38	0.47
	1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d16	0.60	0.153+3d6/20 L=150	0.38	0.47
Pilas. cmb	Note	Stato	Quota	%Af	M_P= 4 r. snell.	X=927.0 Armat. long.	Y=-20.0 V N/M	V N sis Staffe	e V V/T cls V	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.98	0.153+3d6/20 L=150	0.37	0.46
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20 L=150	0.37	0.46
Pilas.	Note	Stato	Quota	%Af	M_P= 5 r. snell.	X=1155.0 Armat. long.	Y=-20.0 V N/M	V N sis Staff	e V V/T clsV	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.03	0.153+3d6/20 L=15	0.37	0.45
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20 L=15	0.37	0.45
Pilas. cmb	Note	Stato	Quota	%Af	M_P= 6 r. snell.	X=1383.0 Armat. long.	Y=-20.0 V N/M	V N sis Staffe	e V V/T cls V	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.05	0.153+3d6/20 L=150	0.37	0.44

[b= 5,31,5,5	:1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.58	0.153+3d6/20 L=150	0.37	0.44
Pilas.	Note	Stato	Quota	%Af	M_P= 7 r. snell.	X=1611.0 Armat. long.		V N sis Staffe	V V/T cls V	V/T acc Rif.
7 s	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.06	0.153+3d6/20 L=150	0.36	0.43
30,31,5,5 [b= 8,31,5,5	:1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.56	0.153+3d6/20 L=150	0.36	0.43
Pilas.	Note	Stato	Quota	%Af	M_P= 8 r. snell.	X=1839.0 Armat. long.		V N sis Staffe	V V/T clsV	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.06	0.153+3d6/20 L=150	0.36	0.43
24,21,11, [b= 10,21,11,	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.56	0.153+3d6/20 L=150	0.36	0.43
Pilas.	Note	Stato	Quota	%Af	M_P= 9 r. snell.	X=2067.0 Armat. long.	Y=-20.0 V N/M	V N sis Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.05	0.153+3d6/20 L=150	0.37	0.44
26,21,11, [b= 11,21,11,	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.58	0.153+3d6/20 L=150	0.37	0.44
Pilas.		Stato	Quota		M_P= 10 r. snell.	X=2295.0 Armat. long.	Y=-20.0 V N/M	V N sis Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.03	0.153+3d6/20 L=150	0.37	0.45
26,21,11, [b= 11,21,11,	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20 L=150	0.37	0.45
Pilas.		Stato	Quota		M_P= 11 r. snell.	X=2523.0 Armat. long.		V N sis Staffe	V V/T cls V	V/T acc Rif.
11 s	=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.98	0.153+3d6/20 L=150	0.37	0.46
26,21,31, [b= 11,21,31,	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20 L=150	0.37	0.46
Pilas.	Note	Stato	Quota		M_P= 12 r. snell.	X=2751.0 Armat. long.		V N sis Staffe	V V/T cls V	V/T acc Rif.
12 s	=1,m=2	ok,ok	0.0	0.96	0.29	4d16 0+0 d16	0.92	0.153+3d6/20 L=150	0.38	0.47
26,23,23, [b= 11,23,23,	1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d16	0.60	0.153+3d6/20 L=150	0.38	0.47
Pilas.	Note	Stato	Quota		M_P= 13 r. snell.	X=2979.0 Armat. long.		V N sis Staffe	V V/T cls V	V/T acc Rif.
13 s	=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.88	0.163+3d6/20 L=150	0.38	0.47
11,5,22,1 [b= 11,5,22,1	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.60	0.153+3d6/20 L=150	0.38	0.47
Pilas.	Note	Stato	Quota		M_P= 14 r. snell.	X=3207.0 Armat. long.	Y=-20.0 V N/M	V N sis Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.29	4d16 0+0 d16	0.92	0.203+3d6/20 L=150	0.38	0.50
-	1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d16	0.65	0.203+3d6/20 L=150	0.38	0.50
10,11,22,		Ctata	Ouete		M_P= 15	X=-2.76e-04\			. \/ \//T ala\/	V/T one Dif
Pilas. cmb	Note	Stato NV,NV	Quota 0.0	%AI 0.57	r. snell. 0.15	Armat. long. 4d16 2+0 d16	1.13	V N sis Staffe 0.072+2d6/20 L=150		1.12
33,36,36,	8	INV,INV								
8,36,36,8	:1.0;1.0]		150.0	0.57	0.15	4d16 2+0 d16		0.072+2d6/20 L=150	0.70	1.12
Pilas. cmb	Note	Stato	Quota		M_P= 16 r. snell.	X=3450.0\ Armat. long.			V V/T cls V	V/T acc Rif.
16s=9 27,26,26,	97,m=2 10	NV,NV	0.0	0.57	0.15	4d16 2+0 d16	1.13	0.072+2d6/20 L=150	0.70	1.12
	1.0;1.0]		150.0	0.57		4d16 2+0 d16	0.36	0.072+2d6/20 L=150	0.70	1.12
Pilas. cmb	Note	Stato	Quota		M_P= 17 r. snell.	X=-2.76e-04 Armat. long.	Y=259.0 V N/M	V N sis Staffe	V V/T cls V	V/T acc Rif.
17 s	=1,m=2	ok,ok	0.0	0.96	0.16	4d16 0+0 d16	0.62	0.083+3d6/20 L=150	0.39	0.43
36,33,36, [b=	31 :1.0;1.0]		150.0	0.96	0.16	4d16 0+0 d16	0.43	0.083+3d6/20 L=150	0.39	0.43

36,33,36,	31										
Pilas.	Note	Stato	Quota		M_P= 18 r. snell.	X=3450.0 Armat. long.	Y=259.0 V N/M	V N sis	Staffe	V V/T cls V	V/T acc Rif.
cmb 18 s	=1,m=2	ok,ok	0.0	0.96	0.16	4d16 0+0 d16	0.62	0.083+3d6/20	L=150	0.39	0.43
-	1.0;1.0]		150.0	0.96	0.16	4d16 0+0 d16	0.43	0.083+3d6/20	L=150	0.39	0.43
26,27,26, Pilas.	21 Note	Stato	Quota		M_P= 19 r. snell.	X=-2.76e-04 Armat. long.	Y=483.0 V N/M	V N sis	Staffe	V V/T cls V '	V/T acc Rif.
cmb	=1,m=2	ok,ok	0.0	0.96	0.11	4d16 0+0 d16	0.55	0.043+3d6/20			0.40
33,30,36, [b=	36 1.0;1.0]		150.0	0.96	0.11	4d16 0+0 d16	0.35	0.033+3d6/20	L=150	0.34	0.40
31,30,36, Pilas.	36 Note	Stato	Quota		M_P= 20 r. snell.	X=3450.0 Armat. long.	Y=483.0 V N/M	V N sis	Staffe	V V/T cls V '	V/T acc Rif.
cmb 20 s	=1,m=2	ok,ok	0.0	0.96	0.11	4d16 0+0 d16	0.55	0.043+3d6/20	L=150	0.34	0.40
	1.0;1.0]		150.0	0.96	0.11	4d16 0+0 d16	0.35	0.033+3d6/20	L=150	0.34	0.40
21,24,26, Pilas.	26 Note	Stato	Quota		M_P= 21 r. snell.	X=-2.76e-04 Armat. long.		V N sis	Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.11	4d16 0+0 d16	0.55	0.043+3d6/20	L=150	0.34	0.40
	1.0;1.0]		150.0	0.96	0.11	4d16 0+0 d16	0.35	0.033+3d6/20	L=150	0.34	0.40
36,33,31, Pilas.	31 Note	Stato	Quota		M_P= 22 r. snell.	X=3450.0 Armat. long.		V N sis	Staffe	V V/T cls V	V/T acc Rif.
cmb 22 s	=1,m=2	ok,ok	0.0	0.96	0.11	4d16 0+0 d16	0.55	0.043+3d6/20	L=150	0.34	0.40
	1.0;1.0]		150.0	0.96	0.11	4d16 0+0 d16	0.35	0.033+3d6/20	L=150	0.34	0.40
26,27,21,		Ctata	0		M_P= 23	X=-2.76e-04		V/NI aia	04-#-	\/\//T ala\/\	//T Dif
Pilas. cmb	Note	Stato	Quota 0.0		r. snell.	Armat. long.	V N/M	V N sis			
31,30,31,		ok,ok		0.96	0.16	4d16 0+0 d16	0.62	0.083+3d6/20			0.43
31,30,31,	=1.0;1.0] 36		150.0	0.96	0.16 M P= 24	4d16 0+0 d16 X=3450.0	0.43	0.083+3d6/20	L-150	0.39	0.43
Pilas. cmb	Note	Stato	Quota		r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.16	4d16 0+0 d16	0.62	0.083+3d6/20	L=150	0.40	0.44
	1.0;1.0]		150.0	0.96	0.16	4d16 0+0 d16	0.43	0.083+3d6/20	L=150	0.40	0.44
Pilas.	Note	Stato	Quota		M_P= 25 r. snell.	X=-2.76e-04 Armat. long.	Y=1190.0 V N/M	V N sis	Staffe	V V/T cls V	V/T acc Rif.
	97,m=2 15	NV,NV	0.0	0.57	0.15	4d16 2+0 d16	1.13	0.072+2d6/20	L=150	0.70	1.12
	1.0;1.0]		150.0	0.57	0.15	4d16 2+0 d16	0.36	0.072+2d6/20	L=150	0.70	1.12
Pilas.	Note	Stato	Quota		M_P= 26 r. snell.	X=3450.0 Armat. long.	Y=1190.0 V N/M	V N sis	Staffe	V V/T cls V	V/T acc Rif.
	97,m=2 17	NV,NV	0.0	0.57	0.15	4d16 2+0 d16	1.14	0.072+2d6/20	L=150	0.70	1.13
	1.0;1.0]		150.0	0.57	0.15	4d16 2+0 d16	0.36	0.072+2d6/20	L=150	0.70	1.13
Pilas.	Note	Stato	Quota		M_P= 27 r. snell.	X=243.0° Armat. long.	Y=1210.0 V N/M	V N sis	Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2 14	ok,ok	0.0	0.96	0.29	4d16 0+0 d16	0.92	0.203+3d6/20	L=150	0.38	0.50
	1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d16	0.65	0.203+3d6/20	L=150	0.38	0.50
Pilas.	Note	Stato	Quota		M_P= 28 r. snell.	X=471.0° Armat. long.	Y=1210.0 V N/M	V N sis	Staffe	V V/T cls V	V/T acc Rif.
	=1,m=2 .14	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.88	0.163+3d6/20	L=150	0.37	0.47
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.60	0.153+3d6/20	L=150	0.38	0.47
						126					

Pilas.	Note	Stato	Quota		M_P= 29 r. snell.	X=699.0 Y Armat. long.		V N sis	Staffe V	′ V/T cls V \	V/T acc Rif.
	=1,m=2	ok,ok	0.0	0.96	0.29	4d16 0+0 d16	0.91	0.153+3d6/20	L=150	0.38	0.47
	:1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d16	0.60	0.153+3d6/20	L=150	0.38	0.47
14,34,34,		04-4-	Overte		M_P= 30	X=927.0 Y		V/NI nin	C4-#- \	/	//T Dif
Pilas. cmb		Stato	Quota		r. snell.	Armat. long.		V N sis			
31,36,26,		ok,ok	0.0	0.96	0.28	4d16 0+0 d16		0.153+3d6/20			0.46
p= ,14,36,26	:1.0;1.0] 14		150.0	0.96	0.28	4d16 0+0 d16		0.153+3d6/20	L=150	0.37	0.46
Pilas. cmb	Note	Stato	Quota		M_P= 31 r. snell.	X=1155.0 Y Armat. long.		V N sis	Staffe \	V/T clsV \	V/T acc Rif.
31 s= 31,36,14,	=1,m=2 14	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.03	0.153+3d6/20	L=150	0.37	0.45
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20	L=150	0.37	0.45
Pilas.		Stato	Quota		M_P= 32 r. snell.	X=1383.0 Y Armat. long.		V N sis	Staffe V	VV/T clsV V	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.05	0.153+3d6/20	L=150	0.37	0.44
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.58	0.153+3d6/20	L=150	0.37	0.44
14,36,14, Pilas.		Stato	Quota		M_P= 33 r. snell.	X=1611.0 Y Armat. long.		V N sis	Staffe \	VV/T clsV V	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.06	0.153+3d6/20	L=150	0.36	0.43
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.56	0.153+3d6/20	L=150	0.36	0.43
15,36,14,			_		M_P= 34	X=1839.0 Y					
Pilas. cmb		Stato	Quota		r. snell.	· ·		V N sis			
27,26,20,		NV,ok	0.0	0.96	0.28	4d16 0+0 d16					0.43
b=[17,26,20,	:1.0;1.0] 20		150.0	0.96	0.28	4d16 0+0 d16	0.56	0.153+3d6/20	L=150	0.36	0.43
Pilas. cmb	Note	Stato	Quota		M_P= 35 r. snell.	X=2067.0 Y Armat. long.		V N sis	Staffe \	V/T clsV	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.05	0.153+3d6/20	L=150	0.37	0.44
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.58	0.153+3d6/20	L=150	0.37	0.44
Pilas.	Note	Stato	Quota		M_P= 36 r. snell.	X=2295.0 Y Armat. long.		V N sis	Staffe \	VV/T clsV V	V/T acc Rif.
	=1,m=2	NV,ok	0.0	0.96	0.28	4d16 0+0 d16	1.03	0.153+3d6/20	L=150	0.37	0.45
-	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20	L=150	0.37	0.45
20,26,20, Pilas.	Note	Stato	Quota		M_P= 37 r. snell.	X=2523.0 Y Armat. long.	= 1210.0 V N/M	V N sis	Staffe V	′ V/T cls V \	V/T acc Rif.
cmb 37 s=	=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.98	0.153+3d6/20	L=150	0.37	0.46
-	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.59	0.153+3d6/20	L=150	0.37	0.46
20,26,36,		04-4-	0		M_P= 38	X=2751.0 Y		MAL - S-	04-44- 1	() (/T - l -) ()	UT - Dif
Pilas. cmb	Note	Stato	Quota		r. snell.	· ·		V N sis			
21,28,28,2		ok,ok	0.0	0.96	0.29	4d16 0+0 d16	0.90	0.153+3d6/20		0.37	0.47
[b= 20,28,28,	:1.0;1.0] 20		150.0	0.96	0.29	4d16 0+0 d16	0.60	0.153+3d6/20	L= 15U	0.37	0.47
Pilas. cmb	Note	Stato	Quota		M_P= 39 r. snell.	X=2979.0 Y Armat. long.		V N sis	Staffe \	VV/T clsV V	V/T acc Rif.
39 s= 20,14,25,	=1,m=2 20	ok,ok	0.0	0.96	0.28	4d16 0+0 d16	0.88	0.163+3d6/20	L=150	0.38	0.47
	1.0;1.0]		150.0	0.96	0.28	4d16 0+0 d16	0.60	0.153+3d6/20	L=150	0.38	0.47
				ı	M_P= 40	X=3207.0 Y	=1210.0				

Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. lo	ng. V N/N	M V N sis	Staffe	V V/T cl	sV V/T acc Rif.
cmb 40 s=		ok,ok	0.0	0.96	0.29	4d16 0+0 c	116 0.9	2 0.203	3+3d6/20 L=150	0.3	9 0.50
17,20,25,2 [b=1 17,20,25,2	1.0;1.0]		150.0	0.96	0.29	4d16 0+0 d	116 0.6	5 0.203	3+3d6/20 L=150	0.39	9 0.50
Pilas.				%Af 0.96	r. snell. 0.29		V N/I 1.1			V V/T cl : 0.7	sV V/T acc 0 1.13
Pilas. M3-3	sovr. X	(i sovr.	. Xf so	ovr. Yi	sovr. Yf	M 2-2 i	M 2-2 f	М 3-3 і	M 3-3 f Luc	e per V	V M2-2 V
1 1.516e+04	0.0	0	0.0	0.0	0.0	daN m 8886.76	daN m 8856.48	daN m 8886.76	daN m 8856.48	cm 129.00	daNdaN 1.516e+04
1.045e+04	0.0	0	0.0	0.0	0.0	6126.20	6091.45	6126.20	6091.45	129.00	1.045e+04
3	0.0	0	0.0	0.0	0.0	6085.96	6051.16	6085.96	6051.16	129.00	1.038e+04
1.038e+04 4	0.0	0	0.0	0.0	0.0	6089.21	6054.40	6089.21	6054.40	129.00	1.038e+04
1.038e+04 5	0.0	0	0.0	0.0	0.0	6089.99	6055.18	6089.99	6055.18	129.00	1.039e+04
1.039e+04 6	0.0	0	0.0	0.0	0.0	6090.75	6055.95	6090.75	6055.95	129.00	1.039e+04
1.039e+04 7	0.0	0	0.0	0.0	0.0	6090.85	6056.05	6090.85	6056.05	129.00	1.039e+04
1.039e+04 8	0.0	0	0.0	0.0	0.0	6090.84	6056.04	6090.84	6056.04	129.00	1.039e+04
1.039e+04 9	0.0	0	0.0	0.0	0.0	6090.74	6055.93	6090.74	6055.93	129.00	1.039e+04
1.039e+04 10	l 0.0	0	0.0	0.0	0.0	6089.97	6055.17	6089.97	6055.17	129.00	1.039e+04
1.039e+04 11	l 0.0	0	0.0	0.0	0.0	6089.11	6054.32	6089.11	6054.32	129.00	1.038e+04
1.038e+04 12	l 0.0	0	0.0	0.0	0.0	6086.08	6051.26	6086.08	6051.26	129.00	1.038e+04
1.038e+04 13	l 0.0	0	0.0	0.0	0.0	6126.29	6091.53	6126.29	6091.53	129.00	1.045e+04
1.045e+04 14	l 0.0	0	0.0	0.0	0.0	6427.39	6393.01	6427.39	6393.01	129.00	1.096e+04
1.096e+04 15	l 0.0	0	0.0	0.0	0.0	3.086e+04	3.066e+04	1.468e+04	1.459e+04	129.00	5.263e+04
2.503e+04 16	l 0.0	0	0.0	0.0	0.0	3.086e+04	3.066e+04	1.468e+04	1.459e+04	129.00	5.263e+04
2.504e+04 17			0.0	0.0	0.0	8129.51	8097.65	8129.51	8097.65		1.386e+04
1.386e+04 18			0.0	0.0	0.0	8130.05	8098.19	8130.05	8098.19	129.00	1.387e+04
1.387e+04 19			0.0	0.0	0.0	7860.82	7828.44	7860.82	7828.44		1.341e+04
1.341e+04 20			0.0	0.0	0.0	7860.67	7828.30	7860.67	7828.30		1.341e+04
1.341e+04 21			0.0	0.0	0.0	7860.82	7828.45	7860.82	7828.45		1.341e+04
1.341e+04 22			0.0	0.0	0.0	7861.14	7828.77	7861.14	7828.77		1.341e+04
1.341e+04 23			0.0	0.0	0.0	8129.51	8097.65	8129.51	8097.65		1.386e+04
1.386e+04	ļ										
24 1.387e+04			0.0	0.0	0.0	8132.17	8100.32	8132.17	8100.32		1.387e+04
25 2.503e+04			0.0	0.0		3.086e+04					5.263e+04
26 2.504e+04			0.0	0.0		3.087e+04					5.264e+04
27 1.096e+04			0.0	0.0	0.0	6427.53	6393.14	6427.53	6393.14		1.096e+04
28 1.045e+04			0.0	0.0	0.0	6126.20	6091.43	6126.20	6091.43		1.045e+04
29 1.038e+04			0.0	0.0	0.0	6085.96	6051.16	6085.96	6051.16		1.038e+04
30 1.038e+04	0.0 I	0	0.0	0.0	0.0	6089.20	6054.40	6089.20	6054.40	129.00	1.038e+04
31 1.039e+04	0.0 L	0	0.0	0.0	0.0	6089.99	6055.18	6089.99	6055.18	129.00	1.039e+04
32 1.039e+04	0.0	0	0.0	0.0	0.0	6090.74	6055.93	6090.74	6055.93	129.00	1.039e+04
33	0.0		0.0	0.0	0.0	6090.84	6056.04	6090.84	6056.04	129.00	1.039e+04

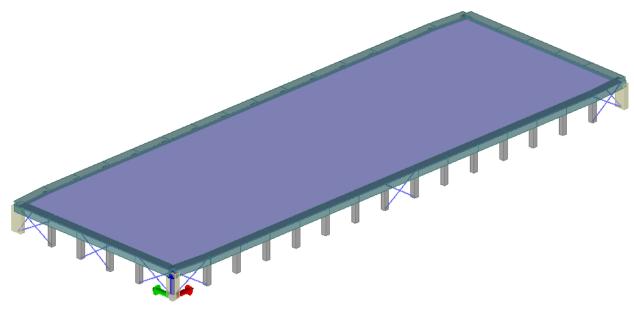
1.039e+	∙04										
34	0.0	0.0	0.0	0.0	6090.84	6056.04	6090.84	6056.04	129.00	1.039e+04	
1.039e+											
35		0.0	0.0	0.0	6090.74	6055.93	6090.74	6055.93	129.00	1.039e+04	
1.039e+		0.0	0.0	0.0	0000 00	0055.40	0000 00	0055.40	400.00	4 000 . 04	
36		0.0	0.0	0.0	6089.99	6055.18	6089.99	6055.18	129.00	1.039e+04	
1.039e+ 37		0.0	0.0	0.0	6089.16	6054.25	6000 16	6054.25	120.00	1 0200 1 04	
1.038e+		0.0	0.0	0.0	0009.10	6054.35	6089.16	6054.35	129.00	1.038e+04	
38		0.0	0.0	0.0	6086.37	6051.57	6086.37	6051.57	129.00	1.038e+04	
1.038e+		0.0	0.0	0.0	0000.07	0051.57	0000.07	0001.07	123.00	1.0000104	
39		0.0	0.0	0.0	6126.49	6091.73	6126.49	6091.73	129.00	1.045e+04	
1.045e+											
40	0.0	0.0	0.0	0.0	6427.61	6393.24	6427.61	6393.24	129.00	1.096e+04	
1.096e+	-04										
Pilas.					M 2-2 i	M 2-2 f	M 3-3 i	M 3-3 f		V M2-2	V
M3-3					0.007 .04	0.007 .04	4 400 . 04	4.450 .04		5.004 .04	
0.504	0.4				3.087e+04	3.067e+04	1.468e+04	1.459e+04		5.264e+04	
2.504e+	·U4										

< TABELLA VERIFICHE

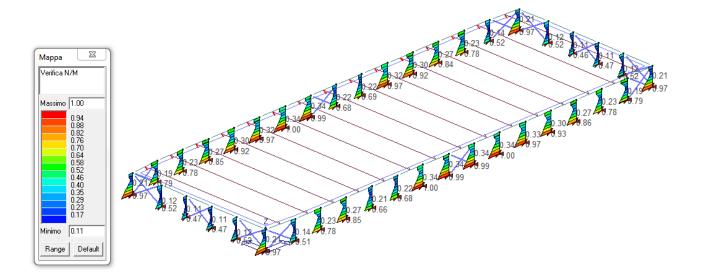
Elementi post rinforzo tipo: C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI Elementi post rinforzo tipo: C8A.7.2 INCAMICIATURA IN ACCIAIO e assimilabili Elementi post rinforzo tipo: C8A.7.1 INCAMICIATURA IN C.A. Elementi non rinforzati

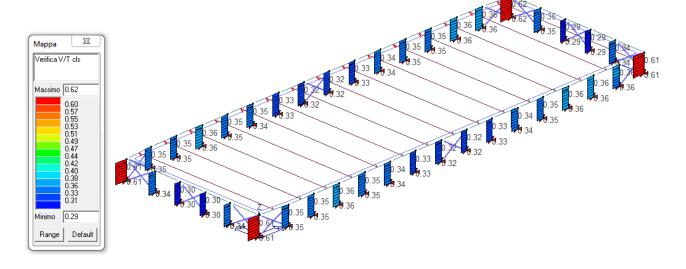
Pilas.I Pilas.S NodoSL codver. (+) cmb		V +	V + af s	N + 1	ver. (-)	V -	V - af s	N -	AreaV2	AreaV3	Rif.	
1	45SLV:NV	1.06	daN 0.0-	daN 1.045e+04	daN 0.0	0.19	daN 0.0-	daN 1.045e+04	daN 0.0	cm2 965.7	cm2 643.8	
5(2),5(2) 2	46 SLV:ok	0.97	0.0	-9588.19	0.0	0.17	0.0	-9588.19	0.0	965.7	643.8	
5(2),5(2)	24 SLV:ok	0.98	0.0	-9677.29	0.0	0.17	0.0	-9677.29	0.0	965.7	643.8	
5(2),5(2) 4	26 SLV:ok	0.98	0.0	-9593.45	0.0	0.17	0.0	-9593.45	0.0	965.7	643.8	
5(2),5(2) 5	2 SLV:ok	0.96	0.0	-9475.07	0.0	0.17	0.0	-9475.07	0.0	965.7	643.8	
5(2),5(2) 6	3 SLV:ok	0.95	0.0	-9312.03	0.0	0.17	0.0	-9312.03	0.0	965.7	643.8	
5(2),5(2) 7	4 SLV:ok	0.93	0.0	-9112.28	0.0	0.16	0.0	-9112.28	0.0	965.7	643.8	
5(2),5(2) 8 11(2),11(2)	5 SLV:ok	0.93	0.0	9109.05	0.0	0.16	0.0	9109.05	0.0	965.7	643.8	
9 11(2),11(2)	6 SLV:ok	0.95	0.0	9309.77	0.0	0.17	0.0	9309.77	0.0	965.7	643.8	
10 11(2),11(2)	7 SLV:ok	0.96	0.0	9473.52	0.0	0.17	0.0	9473.52	0.0	965.7	643.8	
11(2),11(2) 11 11(2),11(2)	8 SLV:ok	0.98	0.0	9592.43	0.0	0.17	0.0	9592.43	0.0	965.7	643.8	
12 12 11(2),11(2)	9 SLV:ok	0.98	0.0	9676.63	0.0	0.17	0.0	9676.63	0.0	965.7	643.8	
13 11(2),11(2)	10 SLV:ok	0.97	0.0	9588.51	0.0	0.17	0.0	9588.51	0.0	965.7	643.8	
14 11(2),11(2)	11SLV:NV	1.06	0.01	.045e+04	0.0	0.19	0.0	1.045e+04	0.0	965.7	643.8	
15 8(2),8(2)	12SLV:NV	1.06	0.01	.749e+04	0.0	0.19	0.0	1.749e+04	0.0	1624.0	3792.0	
16 5(2),5(2)	13SLV:NV	1.06	0.0-	1.749e+04	0.0	0.19	0.0-	1.749e+04	0.0	1624.0	3792.0	
17 33(3),33(3)	14 SLV:ok	0.92	0.0	-9039.22	0.0	0.16	0.0	-9039.22	0.0	643.8	965.7	
18 27(3),27(3)	15 SLV:ok	0.92	0.0	-9040.01	0.0	0.16	0.0	-9040.01	0.0	643.8	965.7	
19 36(3),36(3)	30 SLV:ok	0.81	0.0	7995.15	0.0	0.14	0.0	7995.15	0.0	643.8	965.7	
20 26(3),26(3)	31 SLV:ok	0.81	0.0	7982.70	0.0	0.14	0.0	7982.70	0.0	643.8	965.7	
21 31(3),31(3)	32 SLV:ok	0.81	0.0	-7995.19	0.0	0.14	0.0	-7995.19	0.0	643.8	965.7	
22 21(3),21(3)	33 SLV:ok	0.81	0.0	-7969.40	0.0	0.14	0.0	-7969.40	0.0	643.8	965.7	
23 30(3),30(3)	34 SLV:ok	0.92	0.0	9039.03	0.0	0.16	0.0	9039.03	0.0	643.8	965.7	
24 24(3),24(3)	35 SLV:ok	0.92	0.0	9046.60	0.0	0.16	0.0	9046.60	0.0	643.8	965.7	

25	36SLV:NV	1.06	0.01.749e+04	0.0	0.19	0.0	1.749e+04	0.0	1624.0	3792.0	
7(2),7(2) 26	37SLV:NV	1.06	0.0-1.749e+04	0.0	0.19	0.0-	1.749e+04	0.0	1624.0	3792.0	
5(2),5(2) 27	38SLV:NV	1.06	0.0-1.046e+04	0.0	0.19	0.0-	1.046e+04	0.0	965.7	643.8	
14(2),14(2)											
28	39 SLV:ok	0.98	0.0 -9590.78	0.0	0.17	0.0	-9590.78	0.0	965.7	643.8	
14(2),14(2) 29	40 SLV:ok	0.98	0.0 -9680.02	0.0	0.17	0.0	-9680.02	0.0	965.7	643.8	
14(2),14(2) 30	41 SLV:ok	0.98	0.0 -9596.28	0.0	0.17	0.0	-9596.28	0.0	965.7	643.8	
14(2),14(2) 31	42 SLV:ok	0.96	0.0 -9478.02	0.0	0.17	0.0	-9478.02	0.0	965.7	643.8	
14(2),14(2)	42 OL V.OK	0.00	0.0 0470.02	0.0	0.17	0.0	0470.02	0.0	000.1	040.0	
32 14(2),14(2)	43 SLV:ok	0.95	0.0 -9315.10	0.0	0.17	0.0	-9315.10	0.0	965.7	643.8	
33	19 SLV:ok	0.93	0.0 -9115.45	0.0	0.16	0.0	-9115.45	0.0	965.7	643.8	
14(2),14(2) 34	20 SLV:ok	0.93	0.0 9108.00	0.0	0.16	0.0	9108.00	0.0	965.7	643.8	
20(2),20(2) 35	21 SLV:ok	0.95	0.0 9308.60	0.0	0.17	0.0	9308.60	0.0	965.7	643.8	
20(2),20(2) 36	22 SLV:ok	0.96	0.0 9472.27	0.0	0.17	0.0	9472.27	0.0	965.7	643.8	
20(2),20(2)											
37	1 SLV:ok	0.98	0.0 9591.18	0.0	0.17	0.0	9591.18	0.0	965.7	643.8	
20(2),20(2)	16 SLV:ok	0.98	0.0 9675.77	0.0	0.17	0.0	9675.77	0.0	965.7	643.8	
20(2),20(2) 39	29 SLV:ok	0.98	0.0 9592.05	0.0	0.17	0.0	9592.05	0.0	965.7	643.8	
20(2),20(2)										242.2	
40 20(2),20(2)	44SLV:NV	1.06	0.01.046e+04	0.0	0.19	0.0	1.046e+04	0.0	965.7	643.8	
Pilas.l	M	er. (+)			ver. (-)						
1 1103.1	V	0.81		•	0.14						
		1.06			0.19						

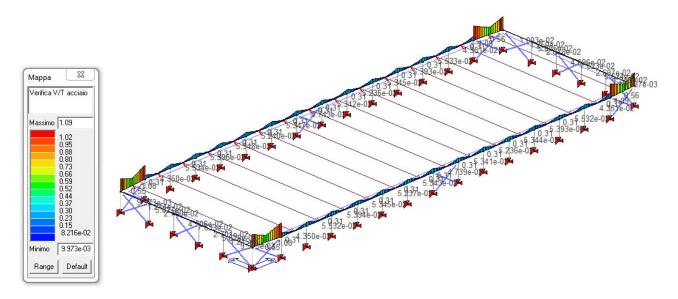

< TABELLA VERIFICHE >
Elementi post rinforzo tipo: C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
Elementi post rinforzo tipo: C8A.7.2 INCAMICIATURA IN ACCIAIO e assimilabili
Elementi post rinforzo tipo: C8A.7.1 INCAMICIATURA IN C.A.
Elementi non rinforzati

							M_T= 1	Z=150.0	P=1	P=16	
							M_T= 1	Z=150.0	P=1	P=16	
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe Rif. cmb
		cm									L=cm
54	NV,NV	0.0	0.13	3.4	3.4	4.5	0.07	1.49	0.27	1.02	2d12/25 L=42 8,32,32
	s=3,m=2	121.9	0.13	3.4	3.4	4.5	0.07	0.83	0.20	0.61	2d6/25 L=124 5,29,29
		243.8	0.13	3.4	3.4	4.5	0.07	1.20	0.29	1.12	2d12/25 L=44 10,29,29
41	ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.92	0.32	0.31	2d12/25 L=45 36,32,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.47	0.21	0.05	2d6/25 L=108 30,32,12
		228.0	0.13	3.4	3.4	0.0	0.07	0.88	0.30	0.31	2d12/25 L=45 10,29,2
42	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.03	0.28	0.31	2d12/25 L=46 32,24,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.69	0.17	0.06	2d6/25 L=108 30,24,5
		228.0	0.13	3.4	3.4	0.0	0.07	0.95	0.27	0.31	2d12/25 L=46 10,21,2
43	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.23	0.26	0.31	2d12/25 L=46 32,24,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.86	0.14	0.06	2d6/25 L=108 30,24,5
		228.0	0.13	3.4	3.4	0.0	0.07	1.10	0.25	0.31	2d12/25 L=46 30,21,2
44	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.33	0.24	0.31	2d12/25 L=45 32,24,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.97	0.12	0.06	2d6/25 L=108 30,24,5
		228.0	0.13	3.4	3.4	0.0	0.07	1.24	0.23	0.31	2d12/25 L=45 30,21,2
45	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.39	0.21	0.31	2d12/25 L=45 32,24,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.04	0.10	0.06	2d6/25 L=108 30,24,5
		228.0	0.13	3.4	3.4	0.0	0.07	1.34	0.20	0.31	2d12/25 L=45 30,21,2
46	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.41	0.18	0.31	2d12/25 L=45 32,2,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.07	0.07	0.06	2d6/25 L=108 30,24,5
		228.0	0.13	3.4	3.4	0.0	0.07	1.40	0.18	0.31	2d12/25 L=45 30,2,2
47	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.41	0.18	0.31	2d12/25 L=46 24,2,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.06	0.05	0.06	2d6/25 L=108 32,8,8
		228.0	0.13	3.4	3.4	0.0	0.07	1.41	0.18	0.31	2d12/25 L=46 30,2,2
48	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.39	0.18	0.31	2d12/25 L=45 24,2,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.07	0.07	0.06	2d6/25 L=108 24,30,11
		228.0	0.13	3.4	3.4	0.0	0.07	1.40	0.18	0.31	2d12/25 L=45 22,2,2
49	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.34	0.20	0.31	2d12/25 L=45 24,31,2
	s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.04	0.10	0.06	2d6/25 L=108 24,30,11
		228.0	0.13	3.4	3.4	0.0	0.07	1.39	0.21	0.31	2d12/25 L=45 22,30,2
50	NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.24	0.23	0.31	2d12/25 L=46 24,31,2


s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.97	0.12	0.06	2d6/25 L=108 24,30,11
5 5, 2	228.0	0.13	3.4	3.4	0.0	0.07	1.33	0.24		2d12/25 L=46 22.30.2
51 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.10	0.25		2d12/25 L=46 24,31,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.86	0.14	0.06	2d6/25 L=108 24,30,11
	228.0	0.13	3.4	3.4	0.0	0.07	1.22	0.26	0.31	2d12/25 L=46 22,30,2
52 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.96	0.27	0.31	2d12/25 L=46 8,31,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.71	0.17	0.06	2d6/25 L=108 24,30,11
	228.0	0.13	3.4	3.4	0.0	0.07	1.06	0.28		2d12/25 L=46 22,30,2
53 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.88	0.30	0.31	2d12/25 L=46 8,23,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.48	0.21	0.05	2d6/25 L=108 24,26,6
55 AN/AN/	228.0	0.13	3.4	3.4	0.0	0.07	0.94	0.32	0.31	2d12/25 L=46 26,26,2
55 NV,NV	0.0	0.13	3.4	3.4	4.5	0.07	1.20	0.29	1.12	2d12/25 L=44 8,23,23
s=3,m=2	121.9	0.13	3.4	3.4	4.5	0.07	0.83	0.21	0.61	2d6/25 L=124 11,23,23
	243.8	0.13	3.4	3.4	4.5	0.07	1.49	0.27 P=15	1.03 P=25	2d12/25 L=42 10,22,22
Trave Note	Pos.	%Af	Af inf.	Af cup	Af long.	M_T= 2 x/d	Z=150.0 V N/M		V V/T acc	Staffe Rif. cmb
56 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.95	0.21	0.19	2d12/25 L=25 33,20,36
s=3,m=2	129.5	0.13	3.4	3.4	0.0	0.07	0.91	0.21	0.16	2d6/25 L=139 31,11,33
5 5, =	259.0	0.13	3.4	3.4	0.0	0.07	1.10	0.23	0.19	2d12/25 L=45 31,11,33
58 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.21	0.09	0.06	2d12/25 L=45 31,15,36
s=3,m=2	112.0	0.13	3.4	3.4	0.0	0.07	0.28	0.08	0.03	2d6/25 L=104 31,27,36
,	224.0	0.13	3.4	3.4	0.0	0.07	0.54	0.10	0.05	2d12/25 L=45 31,27,33
60 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.43	0.10	0.09	2d12/25 L=45 36,32,36
s=3,m=2	112.0	0.13	3.4	3.4	0.0	0.07	0.04	0.09	0.06	2d6/25 L=104 19,32,33
	224.0	0.13	3.4	3.4	0.0	0.07	0.43	0.10	0.09	2d12/25 L=45 31,35,33
62 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.54	0.10	0.05	2d12/25 L=45 36,24,30
s=3,m=2	112.0	0.13	3.4	3.4	0.0	0.07	0.28	0.08	0.03	2d6/25 L=104 36,24,31
	224.0	0.13	3.4	3.4	0.0	0.07	0.21	0.09	0.06	2d12/25 L=45 36,8,31
64 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.10	0.23		2d12/25 L=45 36,20,30
s=3,m=2	129.5	0.13	3.4	3.4	0.0	0.07	0.91	0.21	0.16	2d6/25 L=139 36,20,30
	259.0	0.13	3.4	3.4	0.0	0.07	1.95	0.21 P=16	0.19 P=26	2d12/25 L=25 30,11,31
Trave Note	Pos.	%Af	Af inf.	Af cun	Af long.	M_T= 3 x/d	Z=150.0 V N/M		V V/T acc	Staffe Rif. cmb
57 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.95	0.21	0.19	2d12/25 L=25 27,14,26
s=3,m=2	129.5	0.13	3.4	3.4	0.0	0.07	0.91	0.21	0.19	2d6/25 L=139 21,5,27
5 O,III Z	259.0	0.13	3.4	3.4	0.0	0.07	1.10	0.23	0.19	2d12/25 L=45 21,5,27
59 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.20	0.09	0.06	2d12/25 L=45 21,17,26
s=3,m=2	112.0	0.13	3.4	3.4	0.0	0.07	0.27	0.08	0.03	2d6/25 L=104 21,33,26
-,	224.0	0.13	3.4	3.4	0.0	0.07	0.52	0.10	0.05	2d12/25 L=45 21,33,27
61 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.45	0.10	0.09	2d12/25 L=45 26,28,24
s=3,m=2	112.0	0.13	3.4	3.4	0.0	0.07	0.05	0.08	0.06	2d6/25 L=104 26,28,21
	224.0	0.13	3.4	3.4	0.0	0.07	0.41	0.10	0.09	2d12/25 L=45 21,25,21
63 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.50	0.10	0.05	2d12/25 L=45 26,22,24
s=3,m=2	112.0	0.13	3.4	3.4	0.0	0.07	0.25	0.09	0.03	2d6/25 L=104 26,22,21
05 10/ 1	224.0	0.13	3.4	3.4	0.0	0.07	0.18	0.09	0.06	2d12/25 L=45 26,10,21
65 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.07	0.23		2d12/25 L=45 26,14,24
s=3,m=2	129.5	0.13	3.4	3.4	0.0	0.07	0.88	0.21	0.16	2d6/25 L=139 26,14,24
	259.0	0.13	3.4	3.4	0.0	0.07 M T= 4	1.92 Z=150.0	0.21 P=25	0.19 P=40	2d12/25 L=25 24,5,21
Trave Note	Pos.	%Af	Af inf	Af. sup	Af long	x/d			V V/T acc	Staffe Rif. cmb
66 NV,NV	0.0	0.13	3.4	3.4	4.5	0.07	1.49	0.27	1.02	2d12/25 L=42 15,35,35
s=3,m=2	121.9	0.13	3.4	3.4	4.5	0.07	0.83	0.20	0.61	2d6/25 L=124 14,34,34
, =	243.8	0.13	3.4	3.4	4.5	0.07	1.20	0.29		2d12/25 L=44 17,34,34
68 ok,ok	0.0	0.13	3.4	3.4	0.0	0.07	0.92	0.32		2d12/25 L=46 31,35,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.47	0.21	0.05	2d6/25 L=108 33,35,15
	228.0	0.13	3.4	3.4	0.0	0.07	0.88	0.30		2d12/25 L=46 17,34,2
69 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.03	0.28		2d12/25 L=46 35,27,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.69	0.17		2d6/25 L=108 33,27,14
	228.0	0.13	3.4	3.4	0.0	0.07	0.95	0.27		2d12/25 L=46 17,26,2
70 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.23	0.26	0.31	2d12/25 L=46 35,27,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	0.86	0.14		2d6/25 L=108 33,27,14
71 NV,ok	228.0	0.13	3.4	3.4	0.0	0.07	1.10 1.33	0.25 0.24		2d12/25 L=46 33,26,2
71 NV,ok s=3,m=2	0.0 114.0	0.13 0.13	3.4 3.4	3.4 3.4	0.0 0.0	0.07 0.07	0.97	0.24		2d12/25 L=46 35,27,2 2d6/25 L=108 33,27,14
3-0,111-2	228.0	0.13	3.4	3.4	0.0	0.07	1.24	0.12		2d12/25 L=46 33,26,2
72 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.39	0.21	0.31	2d12/25 L=46 35,27,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.04	0.10		2d6/25 L=108 33,27,14
-,	228.0	0.13	3.4	3.4	0.0	0.07	1.34	0.20		2d12/25 L=46 33,26,2
73 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.41	0.18	0.31	2d12/25 L=46 35,2,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.07	0.07		2d6/25 L=108 33,27,14
	228.0	0.13	3.4	3.4	0.0	0.07	1.40	0.18	0.31	2d12/25 L=46 33,2,2
74 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.41	0.18		2d12/25 L=46 27,2,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.06	0.05		2d6/25 L=108 33,15,14
	228.0	0.13	3.4	3.4	0.0	0.07	1.41	0.18		2d12/25 L=46 33,2,2
75 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.40	0.18		2d12/25 L=46 27,2,2
s=3,m=2	114.0	0.13	3.4	3.4	0.0	0.07	1.07	0.07		2d6/25 L=108 27,33,20
70 NN/-1	228.0	0.13	3.4	3.4	0.0	0.07	1.40	0.18		2d12/25 L=46 25,2,2
76 NV,ok	0.0	0.13	3.4	3.4	0.0	0.07	1.34	0.20	0.31	2d12/25 L=46 27,36,2


77 1 s=3 78 1 s=5 80 s=5 67 N	NV,ok 3,m=2 NV,ok 3,m=2 NV,ok 3,m=2 ok,ok 3,m=2	114.0 228.0 0.0 114.0 228.0 0.0 114.0 228.0 0.0 114.0 228.0 0.0 114.0 228.0 0.0 114.0	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	1.04 1.39 1.24 0.98 1.33 1.11 0.87 1.23 0.97 0.74 1.09 0.89 0.50 0.96	0.10 0.21 0.23 0.12 0.24 0.25 0.14 0.26 0.27 0.16 0.28 0.30 0.20 0.32 0.29 0.21	0.06 0.31 0.31 0.06 0.31 0.06 0.31 0.06 0.31 0.05 0.31 0.05 0.31	2d12/25 L= 2d12/25 L= 2d6/25 L=1 2d12/25 L= 2d6/25 L=1 2d12/25 L= 2d12/25 L= 2d6/25 L=1	108 27,33,20 -46 25,33,2 -46 27,36,2 108 27,33,20 -46 25,33,2 -46 27,36,2 108 27,33,20 -46 25,33,2 -46 15,36,2 108 27,33,20 -46 25,33,2 -46 15,28,2 108 27,25,13 -46 21,25,2 -44 15,28,28 124 20,28,28
		243.8	0.13	3.4	3.4	4.5	0.07	1.50	0.27	1.03		=42 17,25,25
Trave			%Af 0.13	Af inf. A 3.39	.f. sup A f 3.39	f long. 4.52	x/d 0.07	V N/M 1.95	V V/T cls V 0.32	V/T acc 1.13		
TraveM	l negativo	iM pos	sitivo iM	l negativo	fM positi	vo fLu	ce per V	V M-i M+f	V M+i M-f	VEd,min	VEd,max	Vr1 As
	daN n		aN m	daN m	daN		cm	daN	daN	, daN	[´] daN	daNcm2
41	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
42	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
43	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
44	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
45	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
46	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
47	6853.6		353.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
48	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
49	6853.6	6 68	353.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
50	6853.6		353.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
51	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
52	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
53	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
54	6853.6		53.66	6853.66	6853.		210.36	4628.97	4628.97	0.0	0.0	0.0 0.0
55	6853.6		53.66	6853.66	6853.		210.36	4628.97	4628.97	0.0	0.0	0.0 0.0
56	6853.6		53.66	6853.66	6853.		209.50	4647.99	4647.99	0.0	0.0	0.0 0.0
57	6853.6		53.66	6853.66	6853.		209.50	4647.99	4647.99	0.0	0.0	0.0 0.0
58	6853.6		53.66	6853.66	6853.		195.00	4993.61	4993.61	0.0	0.0	0.0 0.0
59	6853.6		53.66	6853.66	6853.		195.00	4993.61	4993.61	0.0	0.0	0.0 0.0
60	6853.6	6 68	53.66	6853.66	6853.		195.00	4993.61	4993.61	0.0	0.0	0.0 0.0
61	6853.6		53.66	6853.66	6853.		195.00	4993.61	4993.61	0.0	0.0	0.0 0.0
62	6853.6		53.66	6853.66	6853.		195.00	4993.61	4993.61	0.0	0.0	0.0 0.0
63 64	6853.6 6853.6		353.66 353.66	6853.66 6853.66	6853.0 6853.0		195.00 209.50	4993.61 4647.99	4993.61 4647.99	0.0 0.0	0.0 0.0	0.0 0.0 0.0 0.0
								404-00	404-00	0.0		0.0 0.0
65 66	6853.60 6853.60		353.66 353.66	6853.66 6853.66	6853.0 6853.0		209.50	4647.99 4628.97	4647.99 4628.97	0.0	0.0 0.0	0.0 0.0
67	6853.6		353.66	6853.66	6853.		210.36	4628.97	4628.97	0.0	0.0	0.0 0.0
68	6853.6		353.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
69	6853.6		353.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
70	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
71	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
72	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
73	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
74	6853.6	6 68	353.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
75	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
76	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
77	6853.6	6 68	53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
78	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
79	6853.6		53.66	6853.66	6853.		199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
80	6853.6	6 68	53.66	6853.66	6853.	66	199.00	4893.24	4893.24	0.0	0.0	0.0 0.0
TraveM	l negativo	iM pos	sitivo iM	l negativo	fM positi	vo f		V M-i M+f	V M+i M-f	VEd,min	VEd,max	Vr1 As
	6853.6	•	353.66	6853.66	6853.0			4993.61	4993.61	0.0	0.0	0.0 0.0


STATO DI PROGETTO



Geometria

CARATTERISTICHE MATERIALI UTILIZZATI LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo se
	diverso da quello globale della struttura)
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo se
	diverso da quello globale della struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari
Massima compressione	Massima tensione di compressione per aste non lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio
-	

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
1	c.a.	Resistenza Rc	assistants a ammassione subias
			resistenza a empressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
3	muratura		
		Muratura consolidata	Muratura per la quale si prevedono interventi di rinforzo"
		Incremento resistenza	Incremento conseguito in termini di resistenza
		Incremento rigidezza	Incremento conseguito in termini di rigidezza
		Resistenza f	Valore della resistenza a compressione
		Resistenza fv0	Valore della resistenza a taglio in assenza di tensioni normali
		Resistenza fh	Valore della resistenza a compressione orizzontale
		Resistenza fb	Valore della resistenza a compressione dei blocchi
		Resistenza fbh	Valore della resistenza a compressione dei blocchi in direzione orizzontale

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

	Resistenza fv0h	Valore della resistenza a taglio in assenza di tensioni normali per le travi
	Resistenza ft	Valore della resistenza a trazione per fessurazione diagonale
	Resistenza fvlim	Valore della massima resistenza a taglio
	Resistenza fbt	Valore della resistenza a trazione dei blocchi
	Coefficiente mu	Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4)
	Coefficiente fi	Coefficiente d'ingranamento utilizzato per la resistenza a taglio
	Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
legno		*
	E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
	Resistenza fc0	Valore della resistenza a compressione parallela
	Resistenza ft0	Valore della resistenza a trazione parallela
	Resistenza fm	Valore della resistenza a flessione
	Resistenza fv	Valore della resistenza a taglio
	Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
	Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
	Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
	Modulo E0,05	Modulo elastico parallelo caratteristico
	Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
2	Calcestruzzo Classe C20/25-Calcestruzzo Classe C20/25 < MATERIALE ESISTENTE >			3.020e+05	0.20	1.258e+05	2.50e-03	1.00e-05	
	Fattore di confidenza FC m								1.20
	Fattore di confidenza FC a								1.20
	Resistenza Rc	153.6	250.0						
	Resistenza fctm		22.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
11	Acciaio Fe360 - S235-acciaio Fe360-S235 <			2.100e+06	0.30	8.077e+05	7.85e-03	1.20e-05	
	MATERIALE NUOVO >								
	Tensione ft	3600.0	3789.5						
	Tensione fy	2350.0	2473.7						
	Resistenza fd	2350.0							
	Resistenza fd (>40)	2100.0							
	Tensione ammissibile	1600.0							
	Tensione ammissibile (>40)	1400.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

Aste acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Beta assegnato	0.80	0.80	0.80	0.80		
Verifica come controvento	SI	NO	NO	NO		
Usa condizioni I e II	SI	SI	SI	SI		
Coefficiente gamma M0	1.05	1.05	1.05	1.05		
Coefficiente gamma M1	1.05	1.05	1.05	1.05		
Coefficiente gamma M2	1.25	1.25	1.25	1.25		

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetta a filo	NO	NO	NO	NO		
Af inf: da q*L*L /	0.0	0.0	0.0	0.0		
Armatura						
Minima tesa	0.31	0.31	0.31	0.33		
Minima compressa	0.31	0.31	0.31	0.33		
Massima tesa	0.78	0.78	0.78	0.81		
Da sezione	SI	SI	SI	SI		
Usa armatura teorica	NO	NO	NO	NO		
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4300.00		
Tensione fy staffe [daN/cm2]	4500.00	4500.00	4500.00	4300.00		
Tipo acciaio	tipo C	tipo C	tipo C	tipo C		
Coefficiente gamma s	1.15	1.15	1.15	1.15		
Coefficiente gamma c	1.50	1.50	1.50	1.50		
Verifiche con N costante	SI	SI	SI	SI		

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Fattore di ridistribuzione	0.0	0.0	0.0	0.0		
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander	Mander	Mander		
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03		
Fattore lambda	1.00	1.00	1.00	1.00		
epsilon max,s	4.000e-02	4.000e-02	4.000e-02	4.000e-02		
epsilon cu2	4.500e-03	4.500e-03	4.500e-03	4.500e-03		
epsilon c2	0.0	0.0	0.0	0.0		
epsilon cy	0.0	0.0	0.0	0.0		
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50	97.50	97.50		
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00		
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00		
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00		
Staffe						
Diametro staffe	0.0	0.0	0.0	6.00		
Passo minimo [cm]	4.00	4.00	4.00	25.00		
Passo massimo [cm]	30.00	30.00	30.00	25.00		
Passo raffittito [cm]	15.00	15.00	15.00	15.00		
Lunghezza zona raffittita [cm]	50.00	50.00	50.00	50.00		
Ctg(Teta) Max	2.50	2.50	2.50	2.50		
Percentuale sagomati	0.0	0.0	0.0	0.0		
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00		
Adotta scorrimento medio	NO	NO	NO	NO		
Torsione non essenziale inclusa	SI	SI	SI	SI		

Pilastri c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetto armatura	Privilegia lati	Privilegia lati	Privilegia lati	Privilegia lati		
Progetta a filo	NO	NO	NO	SI		
Effetti del 2 ordine	SI	SI	SI	NO		
Beta per 2-2	1.00	1.00	1.00	1.00		
Beta per 3-3	1.00	1.00	1.00	1.00		
Armatura						
Massima tesa	4.00	4.00	4.00	4.00		
Minima tesa	1.00	1.00	1.00	1.00		
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4300.00		
Tensione fy staffe [daN/cm2]	4500.00	4500.00	4500.00	3150.00		
Tipo acciaio	tipo C	tipo C	tipo C	tipo C		
Coefficiente gamma s	1.15	1.15	1.15	1.15		
Coefficiente gamma c	1.50	1.50	1.50	1.50		
Verifiche con N costante	SI	SI	SI	SI		
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander	Mander	Mander		
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03		
Fattore lambda	1.00	1.00	1.00	1.00		
epsilon max,s	4.000e-02	4.000e-02	4.000e-02	4.000e-02		
epsilon cu2	4.500e-03	4.500e-03	4.500e-03	4.500e-03		
epsilon c2	0.0	0.0	0.0	0.0		
epsilon cy	0.0	0.0	0.0	0.0		
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50	97.50	97.50		
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00		
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00		
Staffe						
Diametro staffe	0.0	0.0	0.0	6.00		
Passo minimo [cm]	5.00	5.00	5.00	20.00		
Passo massimo [cm]	25.00	25.00	25.00	20.00		
Passo raffittito [cm]	15.00	15.00	15.00	15.00	1	
Lunghezza zona raffittita [cm]	45.00	45.00	45.00	45.00		
Ctg(Teta) Max	2.50	2.50	2.50	2.50		
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00		
Massimizza gerarchia	SI	SI	SI	SI	1	

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Usa tensioni ammissibili	NO	NO	NO	NO		
Af inf: da traliccio	SI	SI	SI	SI		
Consenti armatura a taglio	NO	NO	NO	NO		
Incrementa armatura longitudinale per taglio	SI	SI	SI	SI		
Af inf: da q*L*L /	20.00	20.00	20.00	20.00		
Incremento fascia piena [cm]	5.00	5.00	5.00	5.00		

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Armatura						
Minima tesa	0.15	0.15	0.15	0.15		
Massima tesa	3.00	3.00	3.00	3.00		
Minima compressa	0.0	0.0	0.0	0.0		
Af/h [cm]	7.000e-02	7.000e-02	7.000e-02	7.000e-02		
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4500.00		
Tipo acciaio	tipo C	tipo C	tipo C	tipo C		
Coefficiente gamma s	1.15	1.15	1.15	1.15		
Coefficiente gamma c	1.50	1.50	1.50	1.50		
Fattore di ridistribuzione	0.0	0.0	0.0	0.0		
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	85.00	85.00	85.00	85.00		
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00		
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00		
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00		
Verifica freccia						
Infinita	250.00	250.00	250.00	250.00		
Istantanea	500.00	500.00	500.00	500.00		
Fattore viscosità	3.00	3.00	3.00	3.00		
Usa J non fessurato	NO	NO	NO	NO		
Elementi non strutturali						
Tamponatura antiespulsione	NO	NO	NO	NO		
Tamponatura con armatura	NO	NO	NO	NO		
Fattore di struttura/comportamento	2.00	2.00	2.00	2.00		
Coefficiente gamma m	0.0	0.0	0.0	0.0		
Periodo Ta	0.0	0.0	0.0	0.0		
Altezza pannello	0.0	0.0	0.0	0.0		

EDIFICI ESISTENTI: INTERVENTI DI RINFORZO LEGENDA TABELLE INTERVENTI DI RINFORZO

Per le verifiche da condurre sugli elementi rinforzati il programma attinge le informazioni da archivi di rinforzi. Gli archivi utilizzati e la modalità di applicazione della specifica tecnica dipendono ovviamente dal tipo e materiale dell'elemento strutturale. In particolare nelle tabelle successive vengono dettagliati:

I rinforzi FRP per c.a. (implementati secondo il punto "C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI" e "Linee guida per la Progettazione, l'Esecuzione ed il Collaudo di Interventi di Rinforzo di strutture di c.a., c.a.p. e murarie mediante FRP")
I rinforzi tipo CAM o angolari con calastrelli (implementati secondo il punto C8.7.2.2 INCAMICIATURA IN ACCIAIO)
I rinforzi FRP per murature (implementati come da "Linee guida per la Progettazione, l'Esecuzione ed il Collaudo di Interventi di Rinforzo di strutture di c.a., c.a.p. e murarie mediante FRP")

Titolo colonna	Descrizione	Nota
ld	Indice nell'archivio	
Sigla FRP per c.a.	Nome nell'archivio o riferimento al prodotto commerciale	
Spess.	Spessore del fibrorinforzo	Strati sovrapposti si modellano assegnando lo spessore totale
Mod. E	Modulo elastico del fibrorinforzo	Elastico lineare fino a rottura
eps r	Tensione caratteristica di rottura	
Direz.	Schema di disposizione delle fibre	Da uniassiale a quadriassiale
Applicaz.	Applicazione tipo A o B	Utilizzato in Tabella 2-1
Espos.	Interna, esterna, ambiente aggressivo	Utilizzato in Tabella 2-3
Fibra	Arammidica, vetro, carbonio,altro	Utilizzato in Tabella 2-3
L fasc.	Larghezza delle fasce	Definizione geometrica della fasciatura, se L.fasc=P fasc. o uno dei 2 è nullo, si ritiene applicata un ricoprimento completo
P fasc.	Passo delle fasce	Definizione geometrica della fasciatura, se L.fasc=P fasc. o uno dei 2 è nullo, si ritiene applicata un ricoprimento completo
R curv.	Raggio di curvatura utilizzato nell'arrotondamento degli spigoli	

Titolo colonna	Descrizione	Nota
ld	Indice nell'archivio	
Sigla CAM	Nome nell'archivio o riferimento al prodotto commerciale	Utilizzato anche per incamiciatura in acciaio con profili generici.
Sez.	Angolare utilizzato	Nel caso il profilo non sia presente nell'archivio delle sezioni si riporta "altro"
A	Area dell'angolare	
L	Lato dell'angolare	
s L	Spessore dell'angolare	
fyk	Tensione caratteristica di snervamento angolare	
s cal.	Spessore dei nastri o calastrelli	
L cal.	Altezza dei nastri o calastrelli	

P cal.	Passo dei nastri o calastrelli	
M nas.	Numero dei nastri	Utilizzato nel caso in cui si utilizzino più nastri
		sovrapposti
fyk c	Tensione caratteristica di snervamento dei nastri o calastrelli	
ftk c	Tensione caratteristica di rottura dei nastri o calastrelli	
R curv.	Raggio di curvatura utilizzato nell'arrotondamento degli spigoli	

Titolo colonna	Descrizione	Nota
ld	Indice nell'archivio	
Sigla FRP per mur.	Nome nell'archivio o riferimento al prodotto commerciale	
Spess.	Spessore del fibrorinforzo	Strati sovrapposti si modellano sommando gli spessori
Mod. E	Modulo elastico del fibrorinforzo	Elastico lineare fino a rottura
eps r	Tensione caratteristica di rottura	
eps d	Tensione di progetto assegnata	Valore della tensione massima nel fibrorinforzo, nel caso si adottino dispositivi di ancoraggio. Se pari a 0 viene calcolata dal programma automaticamente
Applicaz.	Applicazione tipo A o B	Utilizzato in Tabella 2-1
Espos.	Interna, esterna, ambiente aggressivo	Utilizzato in Tabella 2-3
Fibra	Arammidica, vetro, carbonio,altro	Utilizzato in Tabella 2-3
L fasc. O	Larghezza delle fasce orizzontali	
P fasc. O	Passo delle fasce orizzontali	
L fasc. V	Larghezza delle fasce verticali	
P fasc. V	Passo delle fasce verticali	
A conc.	Area di rinforzo concentrato alle estremità del maschio murario	
Conf.	Fibrorinforzo adottato per conseguire un effetto di confinamento sulla muratura	Utilizzato per elementi Pilastro in muratura
R curv.	Raggio di curvatura utilizzato nell'arrotondamento degli spigoli	

Per i materiali degli elementi in muratura consolidata, in relazione alla Tabella C8.5.II "Coefficienti correttivi massimi dei parametri meccanici (indicati in Tabella C85.I) da applicarsi in presenza di: malta di caratteristiche buone o ottime; giunti sottili; ricorsi o listature; sistematiche connessioni trasversali; iniezione di miscele leganti; intonaco armato; ristillatura armata con connessione dei paramenti. Si riportano le informazioni atte a definire la tecnica di rinforzo adottata e gli eventuali incrementi in termini di rigidezza e resistenza conseguiti.

A seguire vengono dettagliati gli interventi per le strutture in c.a. con la seguente suddivisione tabellare : Nodi: con gli interventi applicati in ottemperanza ai punti C8.7.4.2.1 INCAMICIATURA IN C.A.; C8.7.4.2.2 INCAMICIATURA IN ACCIAIO ; C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI

Pilastri: con gli interventi applicati in ottemperanza ai punti C8.7.4.2.1 INCAMICIATURA IN C.A.; C8.7.4.2.2 INCAMICIATURA IN ACCIAIO; C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI

Travi: con gli interventi applicati in ottemperanza ai punti C8.7.4.2.1 INCAMICIATURA IN C.A.; C8.7.4.2.2 INCAMICIATURA IN ACCIAIO; C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI; interventi applicati secondo la tecnica del beton plaque

Titolo colonna	Descrizione	Nota
Pilas. I	Pilastro sottostante il nodo rinforzato	
Nodo	Numero del nodo rinforzato	
sez a-o	Sezione del pilastro sottostante ante-operam	
sez p-o	Sezione del pilastro sottostante post-operam	Il nodo viene verificato con la sezione del pilastro post-operam se il pilastro ha camicia con continuità flessionale. L'incremento di capacità si cumula a quello di eventuali altri rinforzi, ma per la verifica si considera il coeff. riduttivo 0.9
Diam.	Diametro della armatura orizzontale aggiuntiva nel nodo	L'armatura è riferita a una sola faccia
Passo	Passo dell'armatura orizzontale aggiuntiva nel nodo	
fyk arm.	Tensione caratteristica di snervamento dell'armatura orizzontale aggiuntiva nel nodo	
Spess.	Spessore della piastra di rinforzo applicata nel nodo	La piastra è applicata a una sola faccia
fyk plt.	Tensione caratteristica di snervamento per la piastra di rinforzo applicata nel nodo	
rinforzo frp	Nome nell'archivio o riferimento al prodotto commerciale	Il rinforzo è applicato a una sola faccia

Titolo colonna	Descrizione	Nota
Pilas.	Pilastro di interesse	Gli interventi con tecnologie diverse sono esclusivi, per l'intervento con FRP è prevista la possibilità di attivare separatamente il rinforzo FRP V per taglio e duttilità (*) e quello FRP F per capacità flessionale (**). (*) incremento di duttilità considerato solo nelle verifiche con q=1. (**) incremento di capacità considerato solo nelle verifiche con q>1
sez a-o	Sezione del pilastro ante-operam	

sez p-o	Sezione del pilastro post-operam	Differente se l'intervento consiste in C8.7.4.2.1 INCAMICIATURA IN C.A
Cont. fless.	Armature longitudinali o angolari opportunamente ancorati alla base e in sommità	Per la camicia in c.a. e acciaio è possibile considerare la continuità del rinforzo interpiano e in questo caso l'incremento di capacità flessionale
rinf. CAM	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.2 INCAMICIATURA IN ACCIAIO
rinf. FRP V	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
rinf. FRP F	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione dei rinforzi CAM o FRP V (per taglio)	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione dei rinforzi FRP F (per flessione)	Come sopra
Titolo colonna	Descrizione	Nota
Trave	Trave di interesse	INOTE
sez a-o	Sezione della trave ante-operam	
sez p-o	Sezione della trave post-operam	Differente se l'intervento consiste in C8A.7.1 INCAMICIATURA IN C.A
Cont. fless.	Armature longitudinali o angolari opportunamente ancorati alle estremità	Per la camicia in c.a. e acciaio è possibile considerare la continuità del rinforzo e in questo caso l'incremento di capacità flessionale
rinf. CAM	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.2 INCAMICIATURA IN ACCIAIO
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione dei rinforzi CAM	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
Titala salanna	Descrizione	Note
Titolo colonna Trave	Descrizione Trave di interesse	Nota Per l'intervento con FRP è prevista la possibilità di attivare separatamente il rinforzo FRP V per taglio e duttilità (*) e quello FRP F per capacità flessionale (**). (*) incremento di duttilità considerato solo nelle verifiche con q=1. (**) incremento di capacità considerato solo nelle verifiche con q>1
rinf. FRP V	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
rinf. FRP F	Nome nell'archivio o riferimento al prodotto commerciale	In applicazione del C8.7.4.2.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione del rinforzo FRP V	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
B sup	Larghezza di applicazione del rinforzo FRP F superiore	
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione dei rinforzi FRP F superiore	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
B inf	Larghezza di applicazione del rinforzo FRP F inferiore	
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione dei rinforzi FRP F inferiore	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
Titolo colonna	Descrizione	Nota
Titolo colonna Trave	Descrizione Trave di interesse	Per l'intervento con BETON PLAQUE è prevista la possibilità di attivare separatamente il rinforzo per taglio da quello per flessione(*). (*)incremento di capacità considerato solo nelle verifiche con q#1
fyk plt	Tensione caratteristica di snervamento per le piastre di rinforzo	
Spess.	Spessore del rinforzo applicato per il taglio	Il rinforzo si considera adeguatamente ancorato sui due lati dell'anima della trave
li V, lc V, lf V	Suddivisione in tre tratti per l'applicazione del rinforzo a taglio	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
A sup	Area complessiva della piastra applicata all'estradosso	
li F, lc F, lf F	Suddivisione in tre tratti per l'applicazione del rinforzo superiore	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se tutti i valori sono nulli (non riportati) si intende applicato per l'intera lunghezza
A inf	Area complessiva della piastra	

Area complessiva della piastra applicata all'intradosso

li F, lc F, lf F	Suddivisione in tre tratti per	Assegnato uno o più tratti i restanti vengono definiti per differenza. Se
	l'applicazione dei rinforzi FRP F	tutti i valori sono nulli (non riportati) si intende applicato per l'intera
	inferiore	lunghezza

ld	Sigla FRP per c.a.	Spess.	Mod. E	eps r	Direz.	Applic.	Espos.	Fibra	L fasc.	P fasc.	R curv.
		mm	N/mm2	%					mm	mm	mm
3	GeoSteel G2000	0.25	2.100e+05	1.9	uniassiale	tipo A	interna	altro	200.0	400.0	20.0

C8A (APPENDICE AL CAPITOLO C8) - MATERIALI DI RINFORZO UTILIZZATI

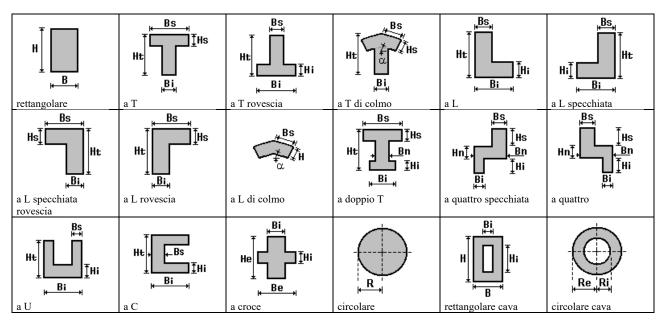
PILASTRI: C8A.7.1 INCAMICIATURA IN C.A. - C8A.7.2 INCAMICIATURA IN ACCIAIO - C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI

Pilas.	sez a-o	sez p-o	Cont. fless.	rinf. CAM	rinf. FRP V	rinf. FRP F	li V	lc V	If V	li F	lc F	If F
							cm	cm	cm	cm	cm	cm
25	97	97			GeoSteel G2000	GeoSteel G2000						
26	97	97			GeoSteel G2000	GeoSteel G2000						
27	1	1			GeoSteel G2000							
28	1	1			GeoSteel G2000							
29	1	1			GeoSteel G2000							
30	1	1			GeoSteel G2000							
31	1	1			GeoSteel G2000							
32	1	1			GeoSteel G2000							
33	1	1			GeoSteel G2000							
34	1	1			GeoSteel G2000	GeoSteel G2000						
35	1	1			GeoSteel G2000	GeoSteel G2000						
36	1	1			GeoSteel G2000							
37	1	1			GeoSteel G2000							
38	1	1			GeoSteel G2000							
39	1	1			GeoSteel G2000							
40	1	1			GeoSteel G2000	GeoSteel G2000						
68	1	1			GeoSteel G2000	GeoSteel G2000						
81	1	1			GeoSteel G2000							
82	1	1			GeoSteel G2000							
83	1	1			GeoSteel G2000							
84	1	1			GeoSteel G2000	GeoSteel G2000						
85	1	1			GeoSteel G2000	GeoSteel G2000						
86	1	1			GeoSteel G2000	GeoSteel G2000						
87	1	1			GeoSteel G2000	GeoSteel G2000						
88	1	1			GeoSteel G2000	GeoSteel G2000						
89	1	1			GeoSteel G2000							
90	1	1			GeoSteel G2000							
91	1	1			GeoSteel G2000							
92	1	1			GeoSteel G2000							
93	1	1			GeoSteel G2000							
94	1	1			GeoSteel G2000	GeoSteel G2000						
95	1	1			GeoSteel G2000							
96	1	1			GeoSteel G2000							
97	1	1			GeoSteel G2000	GeoSteel G2000						
98	1	1			GeoSteel G2000							
100	1	1			GeoSteel G2000	GeoSteel G2000						
101	1	1			GeoSteel G2000	GeoSteel G2000						
102	1	1			GeoSteel G2000	GeoSteel G2000						
103	97	97			GeoSteel G2000	GeoSteel G2000						
104	97	97			GeoSteel G2000	GeoSteel G2000						

TRAVI: BETON PLAQUE

Trave	fyk plt.	Spess.	li V	lc V	If V	A sup	li F	lc F	If F	A inf	li F	lc F	If F
	N/mm2	mm	cm	cm	cm	cm2	cm	cm	cm	cm2	cm	cm	cm
56	235.00	20.00				0.0				40.00	55.00	0.0	55.00
57	235.00	20.00				0.0				40.00	55.00	0.0	55.00
64	235.00	20.00				0.0				40.00	55.00	0.0	55.00
65	235.00	20.00				0.0				40.00	55.00	0.0	55.00

MODELLAZIONE DELLE SEZIONI LEGENDA TABELLA DATI SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

sezione di tipo generico profilati semplici profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2

i valori dimensionali con prefisso H sono riferiti all'asse 3

Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
	cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
Rettangolare: b=29 h=29	841.00	700.83	700.83	9.942e+04	5.894e+04	5.894e+04	4064.83	4064.83	6097.25	6097.25
Rettangolare: b=60 h=42	2520.00	2100.00	2100.00	8.417e+05	7.560e+05	3.704e+05	2.520e+04	1.764e+04	3.780e+04	2.646e+04
Circolare: r=1.5	7.07	5.96	5.96	7.95	3.98	3.98	2.65	2.65	4.50	4.50
Rettangolare: b=70 h=30	2100.00	1750.00	1750.00	4.599e+05	8.575e+05	1.575e+05	2.450e+04	1.050e+04	3.675e+04	1.575e+04
	Rettangolare: b=29 h=29 Rettangolare: b=60 h=42 Circolare: r=1.5	cm2 Rettangolare: b=29 h=29 841.00 Rettangolare: b=60 h=42 2520.00 Circolare: r=1.5 7.07	cm2 cm2 Rettangolare: b=29 h=29 841.00 700.83 Rettangolare: b=60 h=42 2520.00 2100.00 Circolare: r=1.5 7.07 5.96	cm2 cm2 cm2 Rettangolare: b=29 h=29 841.00 700.83 700.83 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 Circolare: r=1.5 7.07 5.96 5.96	cm2 cm2 cm2 cm4 Rettangolare: b=29 h=29 841.00 700.83 700.83 9.942e+04 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 8.417e+05 Circolare: r=1.5 7.07 5.96 5.96 7.95	cm2 cm2 cm2 cm4 cm4 Rettangolare: b=29 h=29 841.00 700.83 700.83 9.942e+04 5.894e+04 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 8.417e+05 7.560e+05 Circolare: r=1.5 7.07 5.96 5.96 7.95 3.98	cm2 cm2 cm2 cm4 cm4 cm4 Rettangolare: b=29 h=29 841.00 700.83 700.83 9.942e+04 5.894e+04 5.894e+04 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 8.417e+05 7.560e+05 3.704e+05 Circolare: r=1.5 7.07 5.96 5.96 7.95 3.98 3.98	cm2 cm2 cm2 cm4 cm4 cm4 cm3 Rettangolare: b=29 h=29 841.00 700.83 700.83 9.942e+04 5.894e+04 5.894e+04 4064.83 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 8.417e+05 7.560e+05 3.704e+05 2.520e+04 Circolare: r=1.5 7.07 5.96 5.96 7.95 3.98 3.98 2.65	cm2 cm2 cm2 cm4 cm4 cm4 cm4 cm3 cm3 Rettangolare: b=29 h=29 841.00 700.83 700.83 9.942e+04 5.894e+04 5.894e+04 4064.83 4064.83 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 8.417e+05 7.560e+05 3.704e+05 2.520e+04 1.764e+04 Circolare: r=1.5 7.07 5.96 5.96 7.95 3.98 3.98 2.65 2.65	cm2 cm2 cm2 cm4 cm4 cm4 cm4 cm3 cm3 cm3 Rettangolare: b=29 h=29 841.00 700.83 700.83 9.942e+04 5.894e+04 5.894e+04 4064.83 4064.83 6097.25 Rettangolare: b=60 h=42 2520.00 2100.00 2100.00 8.417e+05 7.560e+05 3.704e+05 2.520e+04 1.764e+04 3.780e+04

MODELLAZIONE STRUTTURA: NODI LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Y	valore della coordinata Y
Z	valore della coordinata Z

Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

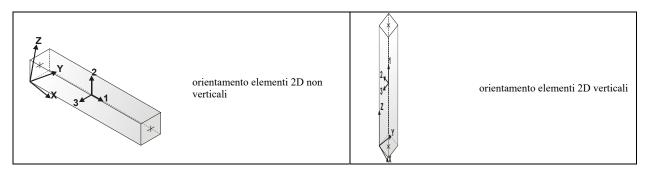
Nodo	numero del nodo.
X	valore della coordinata X
Y	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18 TABELLA DATI NODI

daN

THELLE	II DIIII IV	ODI										
	Nodo	X cm	Y cm	Z cm	Nodo	X cm	Y cm	Z cm	Nodo	X cm	Y cm	Z cm
	1	2523.0	1210.0	150.0	2	1155.0	-20.0	150.0	3	1383.0	-20.0	150.0
	4	1611.0	-20.0	150.0	5	1839.0	-20.0	150.0	6	2067.0	-20.0	150.0
	7	2295.0	-20.0	150.0	8	2523.0	-20.0	150.0	9	2751.0	-20.0	150.0
	10	2979.0	-20.0	150.0	11	3207.0	-20.0	150.0	12		-20.0 11.27e-04	
	13	3450.0	1.27e-04		14	-2.76e-04		150.0	15	3450.0	259.0	150.0
	16	2751.0	1210.0	150.0	19	1611.0	1210.0	150.0	20	1839.0	1210.0	150.0
	21	2067.0	1210.0	150.0	22	2295.0	1210.0	150.0	24	699.0	-20.0	150.0
	26	927.0	-20.0	150.0	29	2979.0	1210.0	150.0	30	-2.76e-04		150.0
	31	3450.0	483.0	150.0	32	-2.76e-04		150.0	33	3450.0	707.0	150.0
	34	-2.76e-04		150.0	35	3450.0	931.0	150.0	36	-2.76e-04		150.0
	37	3450.0	1190.0	150.0	38	243.0	1210.0	150.0	39	471.0	1210.0	150.0
	40	699.0	1210.0	150.0	41	927.0	1210.0	150.0	42	1155.0	1210.0	150.0
	43	1383.0	1210.0	150.0	44	3207.0	1210.0	150.0	45	243.0	-20.0	150.0
	46	471.0	-20.0	150.0		0201.0		.00.0			20.0	.00.0
	Nodo	X cm	Y cm	Z cm	Note		Rig. TY		Rig. RX daN cm/i		Rig. RZ daN cm/r	ad
cm/rad		OIII	OIII	OIII		dai i/oiii	dai t, oiii	uui i, oiii	dai i oiii,i	uu	dair oilli	uu
	17	927.0	1210.0	0.0	v=11111	1						
	18	927.0	-20.0	0.0	v=11111	1						
	23	699.0	1210.0	0.0	v=11111	1						
	25	699.0	-20.0	0.0	v=11111							
	27	3450.0	1190.0	0.0	v=11111							
	28	471.0	1210.0	0.0	v=11111							
	47	471.0	-20.0	0.0	v=11111							
	48	243.0	1210.0	0.0	v=11111							
	49	243.0	-20.0	0.0	v=111111							
	50 51		42.54e-04		v=111111							
	51 52	3207.0 -2.76e-04	1210.0	0.0 0.0	v=111111 v=11111							
	53	3207.0	-20.0	0.0	v=11111							
	54	3450.0	2.54e-04		v=11111							
	55	2979.0	1210.0	0.0	v=111111							
	56	2979.0	-20.0	0.0	v=11111							
	57	2751.0	1210.0	0.0	v=11111							
	58	2751.0	-20.0	0.0	v=11111							
	59	2523.0	1210.0	0.0	v=11111							
	60	2523.0	-20.0	0.0	v=11111	1						
	61	2295.0	1210.0	0.0	v=11111	1						
	62	2295.0	-20.0	0.0	v=11111	1						
	63	2067.0	1210.0	0.0	v=11111							
	64	2067.0	-20.0	0.0	v=11111							
	65	1839.0	1210.0	0.0	v=11111							
	66	1839.0	-20.0	0.0	v=111111							
	67	1611.0 1611.0	1210.0 -20.0	0.0	v=111111 v=11111							
	68 69	1383.0	-20.0 1210.0	0.0 0.0	v=11111							
	70	1383.0	-20.0	0.0	v=11111							
	70 71	1155.0	1210.0	0.0	v=11111							
	72	1155.0	-20.0	0.0	v=11111							
	73	3450.0	259.0	0.0	v=11111							
	74	3450.0	483.0	0.0	v=11111							
	75	3450.0	707.0	0.0	v=11111							
	76	-2.76e-04		0.0	v=11111							
	77	3450.0	931.0	0.0	v=11111	1						
	78	-2.76e-04		0.0	v=11111							
	79	-2.76e-04		0.0	v=11111							
	80	-2.76e-04	4931.0	0.0	v=11111	1						

Prog. e D.L. Strutturale: Ing. Enrico Tasselli


-2.76e-04931.0

0.0

v=111111

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi. Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:

articolare per ogin eleni	ento viene indicato in tabella:
Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

Elem. Wink O	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Rotaz.	Svincolo I	Svincolo J	Win
							gradi		daN/cm3 daN/cm	13
1	Asta tes		15	11	6	1				
2	Asta tes		73	11	6	1				
3	Asta tes		36	11	6	1				
4	Asta tes		52	11	6	1				
5	Asta tes	a 12	49	11	6	1				
6	Asta tes		27	11	6	1				
7	Asta tes		37	11	6	1				
8	Asta tes		45	11	6	1				
9	Asta tes		76	11	6	1				
10	Asta tes	a 50	14	11	6	1				
11	Asta tes		13	11	6	1				
12	Asta tes	a 11	54	11	6	1				
13	Asta tes	a 68	5	11	6	1				
14	Asta tes		66	11	6	1				
15	Asta tes	a 19	65	11	6	1				
16	Asta tes	a 67	20	11	6	1				
17	Asta tes	a 51	37	11	6	1				
18	Asta tes	a 44	27	11	6	1				
19	Asta tes	a 36	48	11	6	1				
20	Asta tes	a 52	38	11	6	1				
21	Asta tes	a 78	32	11	6	1				
22	Asta tes	a 30	79	11	6	1				
23	Asta tes	a 31	75	11	6	1				
24	Asta tes	a 74	33	11	6	1				
25	Pilas.	52	36	2	97	4				
26	Pilas.	27	37	2	97	4				
27	Pilas.	48	38	2	1	4				
28	Pilas.	28	39	2	1	4				
29	Pilas.	23	40	2	1	4				
30	Pilas.	17	41	2	1	4				
31	Pilas.	71	42	2	1	4				
32	Pilas.	69	43	2	1	4				
33	Pilas.	67	19	2	1	4				
34	Pilas.	65	20	2	1	4				
35	Pilas.	63	21	2	1	4				
36	Pilas.	61	22	2	1	4				
37	Pilas.	59	1	2	1	4				
38	Pilas.	57	16	2	1	4				

39	Pilas.	55	29	2	1	4
40	Pilas.	51	44	2	1	4
41	Trave	45	46	2	3	4
42	Trave	46	24	2	3	4
43	Trave	24	26	2	3	4
44	Trave	26	2	2	3	4
45	Trave	2	3	2	3	4
46	Trave	3	4	2	3	4
47	Trave	4	5		3	4
48	Trave	5	6	2	3	4
49	Trave	6	7	2	3	4
50	Trave	7	8	2	3	4
51	Trave	8	9	2	3	4
52	Trave	9	10		3	4
53	Trave	10	11	2	3	4
54 55	Trave Trave	12 11	45 13	2	3 3 3	4 4
56	Trave	12	14	2	3	4
57	Trave	13	15	2	3	4
58	Trave	14	30	2	3	4
59	Trave	15	31	2	3	4
60	Trave	30	32	2	3	4
61	Trave	31	33	2	3	4
62	Trave	32	34		3	4
63	Trave	33	35	2	3	4
64	Trave	34	36	2	3	4
65	Trave	35	37	2	3	4
66	Trave	36 44	38	2	3	4 4
67 68	Trave Pilas.	74	37 31	2 2	1	4
69	Trave	39	40	2	3	4
70	Trave	40	41	2	3	4
71	Trave	41	42	2	3	4
72	Trave	42	43	2	3	4
73	Trave	43	19	2	3	4
74	Trave	19	20	2	3	4
75	Trave	20	21	2	3	4
76	Trave	21	22	2	3	4
77	Trave	22	1	2	3	4
78	Trave	1	16	2	3	4
79	Trave	16	29	2	3	4
80	Trave	29	44	2	3	4
81	Pilas.	58	9	2	1	4
82	Pilas.	56	10	2	1	4
83	Pilas.	64	6	2	1	4
84	Pilas.	76	14	2	1	4
85	Pilas.	73	15	2	1	4
86	Pilas.	78	30	2	1	4
87	Pilas.	18	26	2	1	4
88	Pilas.	72	2		1	4
89	Pilas.	62	7	2 2 2	1	4
90 91	Pilas. Pilas.	60 70	8 3	2	1	4
92	Pilas.	68	4	2	1	4
93	Pilas.	66	5	2	1	4
94	Pilas.	49	45	2	1	4
95 96	Pilas. Pilas.	47 53	46 11	2 2	1	4
97	Pilas.	77	35	2	1	4
98	Pilas.	25	24	2	1	4
99	Trave	38	39	2 2	3	4
100	Pilas.	79	32	2	1	4
101	Pilas.	75	33		1	4
102	Pilas.	80	34	2	1	4
103	Pilas.	50	12	2	97	4
103	Pilas.	54	13	2	97	4

MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.
L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

Id.Arch.	Identificativo dell' archivio
Tipo	Tipo di carico
	Variab. Carico variabile generico
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)
	Neve Carico di neve
G1k	carico permanente (comprensivo del peso proprio)
G2k	carico permanente non strutturale e non compiutamente definito
Qk	carico variabile
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul capitolo
	"normativa di riferimento")
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: per la definizione delle
	masse sismiche
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'elemento			
Tipo	codice di comportamento			
	S elemento utilizzato solo per scarico			
	C elemento utilizzato per scarico e per modellazione piano rigido			
	P elemento utilizzato come pannello			
	M scarico monodirezionale			
	B scarico bidirezionale			
Id.Arch.	Identificativo dell' archivio			
Mat	codice del materiale assegnato all'elemento			
Spessore	spessore dell'elemento (costante)			
Orditura	angolo (rispetto all'asse X) della direzione dei travetti principali			
Gk	carico permanente solaio (comprensivo del peso proprio)			
Qk	carico variabile solaio			
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)			

Nel caso in cui si sia proceduto alla progettazione dei solai con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale); nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d e le verifiche per sollecitazioni proporzionali nonché le verifiche in esercizio.

In particolare i simboli utilizzati in tabella assumono il seguente significato:

	6 6
Elem.	numero identificativo dell'elemento
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);
Pos.	Ascissa del punto di verifica
F ist, F infi	Frecce instantanee e a tempo infinito
Momento	Momento flettente
Taglio	Sollecitazione di taglio
Af inf.	Area di armatura longitudinale posta all'intradosso della trave
Af sup.	Area di armatura longitudinale posta all'estradosso della trave
AfV	Area dell'armatura atta ad assorbire le azioni di taglio
Beff	Base della sezione di cls per l'assorbimento del taglio
	simboli utilizzati con il metodo delle tensioni ammissibili:
sc max	Massima tensione di compressione del calcestruzzo
sf max	Massima tensione nell'acciaio
tau max	Massima tensione tangenziale nel cls
	simboli utilizzati con il metodo degli stati limite:
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione
	(per sola flessione)
verif.	rapporto Sd/Su con sollecitazioni ultime proporzionali:
	valore minore o uguale a 1 per verifica positiva
Verif.V	rapporto Sd/Su con sollecitazioni taglianti proporzionali
	valore minore o uguale a 1 per verifica positiva
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare [normalizzato a 1]
rFfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni frequenti [normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti
	[normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni frequenti[normalizzato a 1]
rFyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato a 1]
rPfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni quasi permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]

Nel caso in cui si sia proceduto alla verifica delle tamponature secondo il D.M. 17.01.2018 - §7.2.3 viene riportata una tabella riassuntiva delle verifiche degli elementi pannello. La verifica confronta i momenti sollecitanti indotti dal sisma con i momenti resistenti, secondo tre ipotesi, due basate sulla resistenza a pressoflessione della tamponatura ed una basata sul cinematismo a seguito della formazione di tre cerniere plastiche sulla tamponatura (rif. Ufficio di Vigilanza sulle Costruzioni, Provincia di Terni).

Qualora la tamponatura sia di tipo antiespulsione (nelle due possibili varianti ordinaria o armata) viene condotta una verifica con meccanismo ad arco con degrado di resistenza. La verifica confronta le pressioni sollecitanti indotte dal sisma con le pressioni resistenti che la tamponatura sviluppa attraverso il meccanismo ad arco. La verifica considera anche il degrado di resistenza dovuto al danneggiamento nel piano della tamponatura. Per quest'ultima tamponatura sono disponibili, in funzione del materiale impiegato (materiale [52] o materiale [53]):

Tamponatura Antiespulsione ordinaria Poroton® Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova.

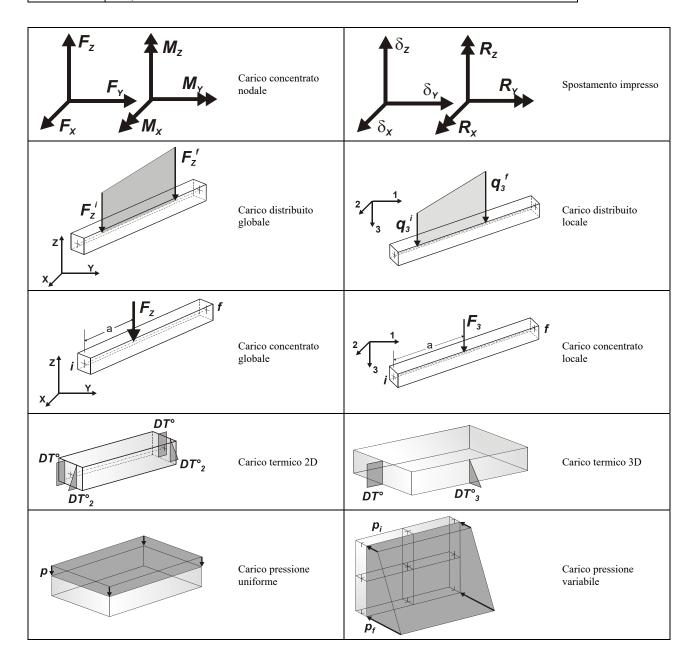
Utilizzabile per il materiale [52].

Tamponatura Antiespulsione armata Poroton[®] Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova.
Utilizzabile per il materiale [53].

La verifica è stata calibrata sulla base di prove sperimentali sul sistema di Tamponatura Antiespulsione anche in presenza di aperture. (rif. Rapporti di Prova redatti dal Dipartimento ICEA - Università degli Studi di Padova di test sperimentali condotti sul sistema Tamponatura Antiespulsione di Cis Edil)

In particolare i simboli utilizzati in tabella assumono il seguente significato:

in particolare i sime	oon utilizzati ili tabella assulliono il seguente significato.
Elem.	Numero identificativo dell'elemento
Stato	Codice di verifica
Ver. c.c.	Verifica nell'ipotesi di trave appoggiata con carico concentrato in mezzeria
Ver. c.d.	Verifica nell'ipotesi di trave appoggiata con carico distribuito
Ver. c.cin.	Verifica nell'ipotesi di cinematismo con formazione di cerniere plastiche in appoggio e mezzeria
Ver. CIS	Rapporto pa/pr (valore minore o uguale a 1 per verifica positiva)
Z	Quota del baricentro dell'elemento
T1	Periodo proprio dell'edificio nella direzione di interesse (ortogonale al pannello)
Ta	Periodo proprio della parete
Sa	Accelerazione massima, adimensionalizzata allo SLV
pa	Pressione sulla parete causata dall'azione sismica
pr	Pressione resistente del meccanismo ad arco
Drift	Spostamento relativo interpiano allo SLV valutato secondo il D.M. 14.01.2018 - § 7.3.3.3
Beta a	Coef. riduttivo per tener conto del danneggiamento del piano dipendente dallo spostamento, ottenuto
	sperimentalmente


	ID Arch.	Tipo	G1k	G2k daN/cm2		Fatt. A	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	Fatt. Fi	
	6	Neve		1.10e-02			1.00	0.50	0.20	0.0	0.0	1.00	
2/7	Elem. Nodo 3/8	Tipo	ID Arch. Nodo	Mat. Nodo	Spessore)	Orditura	G1k	G2k	Qk	Nodo 1/6	i	Nodo
211	NOUO 3/0	·	Nouo	Nouo			daN/cm2	daN/cm2	daN/cm2				
	1 2	СМ	6	m=2	4.0	90.0	4.50e-02	1.10e-02	1.20e-02	45	46	24	26
	7									3	4	5	6
	7									8	9	10	11
	13									15	31	33	35
	37									15	31	33	33
	00									44	29	16	1
	22									21	20	19	43
	42									4.4	40	00	00
	36									41	40	39	38
										34	32	30	14
	12												

MODELLAZIONE DELLE AZIONI LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx, Ty, Tz, rotazione Rx, Ry, Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx.fy.fz.mx.my.mz.ascissa di fine carico)

4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	l dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la larghezza d'influenza
	per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del primo, dimensioni
	dell' impronta, interasse tra i carichi

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

от р.	to previou i seguenti i i tipi di casi di carico.								
	Sigla	Tipo	Descrizione						
1	Ggk	A	caso di carico comprensivo del peso proprio struttura						
2	Gk	NA	caso di carico con azioni permanenti						
3	Qk	NA	caso di carico con azioni variabili						
4	Gsk	A	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture						
5	Qsk	k A caso di carico comprensivo dei carichi variabili sui solai							
6	Qnk	A	caso di carico comprensivo dei carichi di neve sulle coperture						
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura						
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura						
9	Esk	SA	caso di carico sismico con analisi statica equivalente						
10	Edk	SA	caso di carico sismico con analisi dinamica						
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica						
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni						

Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico:

7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: *Numero Tipo* e *Sigla identificativa*, *Valore di riferimento* del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gsk	CDC=G1sk (permanente solai-coperture)	
3	Gsk	CDC=G2sk (permanente solai-coperture n.c.d.)	
4	Qnk	CDC=Qnk (carico da neve)	
5	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G1sk (permanente solai-coperture)
			partecipazione:1.00 per 3 CDC=G2sk (permanente solai-coperture n.c.d.)
			partecipazione:1.00 per 4 CDC=Qnk (carico da neve)
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
7	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
11	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico

DEFINIZIONE DELLE COMBINAZIONI LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $\gamma G I \cdot G I + \gamma G 2 \cdot G 2 + \gamma P \cdot P + \gamma Q I \cdot Q k I + \gamma Q 2 \cdot \psi 0 2 \cdot Q k 2 + \gamma Q 3 \cdot \psi 0 3 \cdot Q k 3 + \dots$

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Combinazione frequente SLE

 $G_1 + G_2 + P + \psi \hat{1} 1 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + \dots$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21} \cdot Qk_{1} + \psi_{22} \cdot Qk_{2} + \psi_{23} \cdot Qk_{3} + \dots$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \dots$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali $G_1 + G_2 + A_d + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	Ψ1	Ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

NTC 2018 Tabella 2.6.I

		Coefficiente γf	EQU	A1	A2
Carichi permanenti	Favorevoli Sfavorevoli	γG1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γG2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 2	
2	SLU	Comb. SLU A1 3	
3	SLU	Comb. SLU A1 4	
	SLU	Comb. SLU A1 5	
5	SLU	Comb. SLU A1 (SLV sism.) 6	
	SLU	Comb. SLU A1 (SLV sism.) 7	
7	SLU	Comb. SLU A1 (SLV sism.) 8	
8	SLU	Comb. SLU A1 (SLV sism.) 9	
9	SLU	Comb. SLU A1 (SLV sism.) 10	
10	SLU	Comb. SLU A1 (SLV sism.) 11	
11	SLU	Comb. SLU A1 (SLV sism.) 12	
12	SLU	Comb. SLU A1 (SLV sism.) 13	
13	SLU	Comb. SLU A1 (SLV sism.) 14	
	SLU	Comb. SLU A1 (SLV sism.) 15	
15	SLU	Comb. SLU A1 (SLV sism.) 16	
16	SLU	Comb. SLU A1 (SLV sism.) 17	
17	SLU	Comb. SLU A1 (SLV sism.) 18	
18	SLU	Comb. SLU A1 (SLV sism.) 19	
19	SLU	Comb. SLU A1 (SLV sism.) 20	
	SLU	Comb. SLU A1 (SLV sism.) 21	
21	SLU	Comb. SLU A1 (SLV sism.) 22	
22	SLU	Comb. SLU A1 (SLV sism.) 23	
23	SLU	Comb. SLU A1 (SLV sism.) 24	
	SLU	Comb. SLU A1 (SLV sism.) 25	
	SLU	Comb. SLU A1 (SLV sism.) 26	
	SLU	Comb. SLU A1 (SLV sism.) 27	
	SLU	Comb. SLU A1 (SLV sism.) 28	
28	SLU	Comb. SLU A1 (SLV sism.) 29	
29	SLU	Comb. SLU A1 (SLV sism.) 30	
	SLU	Comb. SLU A1 (SLV sism.) 31	
	SLU	Comb. SLU A1 (SLV sism.) 32	
	SLU	Comb. SLU A1 (SLV sism.) 33	
	SLU	Comb. SLU A1 (SLV sism.) 34	
	SLU	Comb. SLU A1 (SLV sism.) 35	
	SLU	Comb. SLU A1 (SLV sism.) 36	
	SLU	Comb. SLU A1 (SLV sism.) 37	
	SLD(sis)	Comb. SLE (SLD Danno sism.) 38	
	SLD(sis)	Comb. SLE (SLD Danno sism.) 39	
39	SLD(sis)	Comb. SLE (SLD Danno sism.) 40	

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:
- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),

⁻ per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

Cmb	Tipo	Sigla Id	effetto P-delta
40	SLD(sis)	Comb. SLE (SLD Danno sism.) 41	
41	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 43	
43	SLD(sis)	Comb. SLE (SLD Danno sism.) 44	
44	SLD(sis)	Comb. SLE (SLD Danno sism.) 45	
45	SLD(sis)	Comb. SLE (SLD Danno sism.) 46	
46	SLD(sis)	Comb. SLE (SLD Danno sism.) 47	
47	SLD(sis)	Comb. SLE (SLD Danno sism.) 48	
48	SLD(sis)	Comb. SLE (SLD Danno sism.) 49	
49	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	
50	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	
51	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
58	SLD(sis)	Comb. SLE (SLD Danno sism.) 59	
59	SLD(sis)	Comb. SLE (SLD Danno sism.) 60	
60	SLD(sis)	Comb. SLE (SLD Danno sism.) 61	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 67	
67	SLD(sis)	Comb. SLE (SLD Danno sism.) 68	
68	SLD(sis)	Comb. SLE (SLD Danno sism.) 69	
69	SLE(r)	Comb. SLE(rara) 70	
70	SLE(r)	Comb. SLE(rara) 71	
71	SLE(f)	Comb. SLE(freq.) 72	
72	SLE(f)	Comb. SLE(freq.) 73	
73	SLE(p)	Comb. SLE(perm.) 74	

Cmb	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
1	1.30	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
2	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
3	1.00	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
4	1.00	1.00	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
5	1.00	1.00	1.00	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0		
6	1.00	1.00	1.00	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0		
7	1.00	1.00	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0		
8	1.00	1.00	1.00	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0		
9	1.00	1.00	1.00	0.0	-1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0		
10	1.00	1.00	1.00	0.0	-1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0		
11	1.00	1.00	1.00	0.0	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0		
12	1.00	1.00	1.00	0.0	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0		
13	1.00	1.00	1.00	0.0	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0		
14	1.00	1.00	1.00	0.0	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0		
15	1.00	1.00	1.00	0.0	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0		
16	1.00	1.00	1.00	0.0	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0		
17	1.00	1.00	1.00	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0		
18	1.00	1.00	1.00	0.0	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0		
19	1.00	1.00	1.00	0.0	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0		
20	1.00	1.00	1.00	0.0	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0		
21	1.00	1.00	1.00	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0		
22	1.00	1.00	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0		
23	1.00	1.00	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0		
24	1.00	1.00	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0		
25	1.00	1.00	1.00	0.0	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0		
26	1.00	1.00	1.00	0.0	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0		
27	1.00	1.00	1.00	0.0	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0		
28	1.00	1.00	1.00	0.0	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0		
29	1.00	1.00	1.00	0.0	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0		
30	1.00	1.00	1.00	0.0	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0		
31	1.00	1.00	1.00	0.0	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0		
32	1.00	1.00	1.00	0.0	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0		
33	1.00	1.00	1.00	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0		
34	1.00	1.00	1.00	0.0	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0		
35	1.00	1.00	1.00	0.0	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0		
36	1.00	1.00	1.00	0.0	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0		
37	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0		

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
38	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	10/2/ 11/	
39	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0		
40	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0		
41	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30		
42	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30		
43	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30		
44	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30		
45	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0		
46	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0		
47	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0		
48	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0		
49	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30		
50	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30		
51	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30		
52	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30		
53	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0		
54	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0		
55	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0		
56	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0		
57	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0		
58	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0		
59	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0		
60	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0		
61	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00		
62	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00		
63	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00		
64	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00		
65	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00		
66	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00		
67	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00		
68	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00		
69	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
70	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
71	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
72	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
73	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://essel.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell'allegato alle NTC (rispettivamente media pesata e interpolazione).

L'azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri del	Parametri della struttura										
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica						
III	50.0	1.5	75.0	C	T1						

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella seguente Tabella

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \\ T_C &\leq T < T_D & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

I valori di S_S, T_B, T_C e T_D, sono riportati nella seguenteTabella

· ·				
Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	12.031	44.377	
17406	12.022	44.376	0.714
17407	12.092	44.377	4.840
17185	12.090	44.427	7.253
17184	12.021	44.426	5.487

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	45.0	0.066	2.446	0.270

SL	Pver	Tr	ag	Fo	T*c
SLD	63.0	75.0	0.082	2.443	0.281
SLV	10.0	712.0	0.210	2.406	0.305
SLC	5.0	1462.0	0.272	2.400	0.311

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.066	1.500	2.446	0.848	0.146	0.437	1.864
SLD	0.082	1.500	2.443	0.944	0.150	0.449	1.928
SLV	0.210	1.396	2.406	1.490	0.158	0.474	2.442
SLC	0.272	1.309	2.400	1.688	0.160	0.480	2.686

RISULTATI ANALISI SISMICHE LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di ingresso	Angolo di ingresso dell'azione sismica orizzontale
Fattore di importanza	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
Zona sismica	Zona sismica
Accelerazione ag	Accelerazione orizzontale massima sul suolo
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità CD	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
Fattore riduz. SLD	Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio T1	Periodo proprio di vibrazione della struttura
Coefficiente Lambda	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Ordinata spettro Sd(T1)	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale (verticale Svd)
Ordinata spettro	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno, componente orizzontale (verticale
Se(T1)	Sve)
Ordinata spettro S	Valore dell' ordinata dello spettro in uso nel tratto costante
(Tb-Tc)	
numero di modi	Numero di modi di vibrare della struttura considerati nell'analisi dinamica
considerati	

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

analisi sismica statica equivalente:

quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2

azione sismica complessiva

analisi sismica dinamica con spettro di risposta:

quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2

frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL.PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell' isolatore	
Cmb	Combinazione oggetto della verifica	
Verif.	Codice di verifica ok – verifica positiva, NV – verifica negativa, ND – verifica non completata	
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi) combinato con la regola del 30%	
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)	
V	Azione verticale agente	
Ar	Area ridotta efficace	
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione	
Sig s	Tensione nell' inserto in acciaio	
Gam c(a,s,t)	Deformazioni di taglio dell' elestomero	
Ver	Carico critico per instabilità	

Affinché la verifica sia positiva deve essere:

 $\begin{array}{l} V>0 \\ \text{Sig s} < \text{fyk} \\ \text{Gam t} < 5 \\ \text{Gam s} < \text{Gam * (caratteristica dell' elastomero)} \\ \text{Gam s} < 2 \\ V < 0.5 \text{ Vcr} \end{array}$

CDC	Tipo	Sigla Id	Note
5	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.070 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	0.0	-61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	10.131	0.099	0.552	5.27e-03	1.74e-06	2.635e+05	87.0	2.45e-05	0.0	0.0	0.0
2	14.310	0.070	0.476	3.000e+05	99.0	4.33e-03	1.43e-06	0.0	0.0	0.0	0.0
3	17.372	0.058	0.444	2258.50	0.7	1.17	3.86e-04	1.51e-05	0.0	0.0	0.0
4	24.873	0.040	0.399	3.93	1.30e-03	3.489e+04	11.5	0.15	4.95e-05	0.0	0.0
5	25.621	0.039	0.396	495.71	0.2	188.77	6.23e-02	9.98e-04	0.0	0.0	0.0
6	29.664	0.034	0.382	6.14e-06	0.0	632.14	0.2	10.65	3.52e-03	0.0	0.0
7	35.765	0.028	0.367	0.31	1.04e-04	9.41	3.11e-03	0.05	1.74e-05	0.0	0.0
8	36.574	0.027	0.365	6.49	2.14e-03	22.94	7.57e-03	1.22	4.04e-04	0.0	0.0
9	37.121	0.027	0.364	17.47	5.77e-03	0.04	1.26e-05	1.01	3.33e-04	0.0	0.0
Risulta				3.028e+05		2.993e+05		13.09			
In				99.93		98.76		4.32e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.070 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND

CDC	Tipo	Sigla Id	Note
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	0.0	61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	10.131	0.099	0.552	8.60e-03	2.84e-06	2.635e+05	87.0	4.16e-05	0.0	0.0	0.0
2	14.310	0.070	0.476	3.000e+05	99.0	8.57e-03	2.83e-06	0.0	0.0	0.0	0.0
3	17.372	0.058	0.444	2301.57	8.0	1.03	3.40e-04	1.27e-05	0.0	0.0	0.0
4	24.884	0.040	0.399	3.62	1.19e-03	3.500e+04	11.5	0.14	4.60e-05	0.0	0.0
5	25.618	0.039	0.396	492.51	0.2	173.95	5.74e-02	4.57e-03	1.51e-06	0.0	0.0
6	29.614	0.034	0.382	0.01	4.04e-06	528.96	0.2	10.63	3.51e-03	0.0	0.0
7	35.899	0.028	0.367	1.46e-05	0.0	2.81	9.29e-04	0.09	2.84e-05	0.0	0.0
8	36.513	0.027	0.365	4.33	1.43e-03	40.77	1.35e-02	1.52	5.00e-04	0.0	0.0
9	37.113	0.027	0.364	9.80	3.23e-03	5.49	1.81e-03	0.58	1.91e-04	0.0	0.0
Risulta				3.028e+05		2.993e+05		12.95			
In				99.93		98.76		4.27e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.099 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace Z	z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	10.100	0.099	0.553	8.57e-03	2.83e-06	2.645e+05	87.3	0.0	0.0	0.0	0.0
2	14.362	0.070	0.476	3.028e+05	99.9	7.53e-03	2.48e-06	0.0	0.0	0.0	0.0
3	17.321	0.058	0.445	0.05	1.62e-05	357.88	0.1	1.31e-05	0.0	0.0	0.0
4	25.027	0.040	0.398	7.03e-05	0.0	2.644e+04	8.7	1.14e-04	0.0	0.0	0.0
5	25.601	0.039	0.396	2.61e-03	0.0	7760.94	2.6	1.63e-04	0.0	0.0	0.0
6	29.677	0.034	0.382	0.07	2.19e-05	1.83	6.04e-04	11.29	3.72e-03	0.0	0.0
7	34.823	0.029	0.369	6.56	2.16e-03	1.38	4.55e-04	0.58	1.92e-04	0.0	0.0
8	35.376	0.028	0.368	0.04	1.47e-05	53.70	1.77e-02	0.06	1.93e-05	0.0	0.0
9	37.690	0.027	0.363	0.78	2.56e-04	34.80	1.15e-02	0.38	1.27e-04	0.0	0.0
Risulta				3.028e+05		2.991e+05		12.31			
In				99.93		98.72		4.06e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.396
			ordinata spettro (tratto Tb-Tc) = 0.707 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

CDC	Tipo	Sigla Id	Note
			periodo proprio T1: 0.099 sec.
			fattore q: 1.000
			fattore q (fragili): 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	-172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	10.103	0.099	0.553	4.90e-03	1.62e-06	2.643e+05	87.2	0.0	0.0	0.0	0.0
2	14.362	0.070	0.476	3.028e+05	99.9	4.57e-03	1.51e-06	0.0	0.0	0.0	0.0
3	17.368	0.058	0.444	0.06	1.98e-05	298.83	9.86e-02	1.27e-05	0.0	0.0	0.0
4	25.135	0.040	0.398	2.58e-04	0.0	3.048e+04	10.1	7.05e-05	0.0	0.0	0.0
5	25.535	0.039	0.396	2.69e-03	0.0	4259.36	1.4	3.84e-04	0.0	0.0	0.0
6	29.670	0.034	0.382	0.04	1.30e-05	1.06	3.50e-04	11.09	3.66e-03	0.0	0.0
7	34.299	0.029	0.370	6.89	2.27e-03	4.60e-03	1.52e-06	0.59	1.96e-04	0.0	0.0
8	35.875	0.028	0.367	0.02	4.96e-06	0.28	9.23e-05	0.09	2.99e-05	0.0	0.0
9	37.355	0.027	0.364	0.10	3.19e-05	0.51	1.68e-04	0.44	1.46e-04	0.0	0.0
Risulta				3.028e+05		2.994e+05		12.22			
In				99.93		98.80		4.03e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.070 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	0.0	-61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
	•		Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	10.131	0.099	0.240	5.27e-03	1.74e-06	2.635e+05	87.0	2.45e-05	0.0	0.0	0.0
2	14.310	0.070	0.206	3.000e+05	99.0	4.33e-03	1.43e-06	0.0	0.0	0.0	0.0
3	17.372	0.058	0.191	2258.50	0.7	1.17	3.86e-04	1.51e-05	0.0	0.0	0.0
4	24.873	0.040	0.171	3.93	1.30e-03	3.489e+04	11.5	0.15	4.95e-05	0.0	0.0
5	25.621	0.039	0.169	495.71	0.2	188.77	6.23e-02	9.98e-04	0.0	0.0	0.0
6	29.664	0.034	0.163	6.14e-06	0.0	632.14	0.2	10.65	3.52e-03	0.0	0.0
7	35.765	0.028	0.156	0.31	1.04e-04	9.41	3.11e-03	0.05	1.74e-05	0.0	0.0
8	36.574	0.027	0.155	6.49	2.14e-03	22.94	7.57e-03	1.22	4.04e-04	0.0	0.0
9	37.121	0.027	0.155	17.47	5.77e-03	0.04	1.26e-05	1.01	3.33e-04	0.0	0.0
Risulta				3.028e+05		2.993e+05		13.09			
In				99.93		98.76		4.32e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:0.0

CDC	Tipo	Sigla Id	Note
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.070 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	0.0	61.50	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
			Spettrale	Ххg		Υxg		x g			
	Hz	sec	g	daN		daN		daN			
1	10.131	0.099	0.240	8.60e-03	2.84e-06	2.635e+05	87.0	4.16e-05	0.0	0.0	0.0
2	14.310	0.070	0.206	3.000e+05	99.0	8.57e-03	2.83e-06	0.0	0.0	0.0	0.0
3	17.372	0.058	0.191	2301.57	8.0	1.03	3.40e-04	1.27e-05	0.0	0.0	0.0
4	24.884	0.040	0.171	3.62	1.19e-03	3.500e+04	11.5	0.14	4.60e-05	0.0	0.0
5	25.618	0.039	0.169	492.51	0.2	173.95	5.74e-02	4.57e-03	1.51e-06	0.0	0.0
6	29.614	0.034	0.163	0.01	4.04e-06	528.96	0.2	10.63	3.51e-03	0.0	0.0
7	35.899	0.028	0.156	1.46e-05	0.0	2.81	9.29e-04	0.09	2.84e-05	0.0	0.0
8	36.513	0.027	0.155	4.33	1.43e-03	40.77	1.35e-02	1.52	5.00e-04	0.0	0.0
9	37.113	0.027	0.155	9.80	3.23e-03	5.49	1.81e-03	0.58	1.91e-04	0.0	0.0
Risulta				3.028e+05		2.993e+05		12.95			
In				99.93		98.76		4.27e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
11	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.099 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3 030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	10.100	0.099	0.240	8.57e-03	2.83e-06	2.645e+05	87.3	0.0	0.0	0.0	0.0
2	14.362	0.070	0.205	3.028e+05	99.9	7.53e-03	2.48e-06	0.0	0.0	0.0	0.0
3	17.321	0.058	0.191	0.05	1.62e-05	357.88	0.1	1.31e-05	0.0	0.0	0.0
4	25.027	0.040	0.170	7.03e-05	0.0	2.644e+04	8.7	1.14e-04	0.0	0.0	0.0
5	25.601	0.039	0.169	2.61e-03	0.0	7760.94	2.6	1.63e-04	0.0	0.0	0.0
6	29.677	0.034	0.163	0.07	2.19e-05	1.83	6.04e-04	11.29	3.72e-03	0.0	0.0
7	34.823	0.029	0.157	6.56	2.16e-03	1.38	4.55e-04	0.58	1.92e-04	0.0	0.0
8	35.376	0.028	0.156	0.04	1.47e-05	53.70	1.77e-02	0.06	1.93e-05	0.0	0.0
9	37.690	0.027	0.154	0.78	2.56e-04	34.80	1.15e-02	0.38	1.27e-04	0.0	0.0
Risulta				3.028e+05		2.991e+05		12.31			
ln				99.93		98.72		4.06e-03			
percentuale											

CDC	Tipo	Sigla Id	Note
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			verifica esistenti: fattore FC 1.200
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.300 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.099 sec.
			numero di modi considerati: 9

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

CDC Tipe	o Sigla Id	Note
		combinaz, modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
150.00	3.030e+05	1725.00	595.00	-172.50	0.0	1725.00	595.00	2.236	0.0	0.0
Risulta	3.030e+05									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	10.103	0.099	0.240	4.90e-03	1.62e-06	2.643e+05	87.2	0.0	0.0	0.0	0.0
2	14.362	0.070	0.205	3.028e+05	99.9	4.57e-03	1.51e-06	0.0	0.0	0.0	0.0
3	17.368	0.058	0.191	0.06	1.98e-05	298.83	9.86e-02	1.27e-05	0.0	0.0	0.0
4	25.135	0.040	0.170	2.58e-04	0.0	3.048e+04	10.1	7.05e-05	0.0	0.0	0.0
5	25.535	0.039	0.169	2.69e-03	0.0	4259.36	1.4	3.84e-04	0.0	0.0	0.0
6	29.670	0.034	0.163	0.04	1.30e-05	1.06	3.50e-04	11.09	3.66e-03	0.0	0.0
7	34.299	0.029	0.157	6.89	2.27e-03	4.60e-03	1.52e-06	0.59	1.96e-04	0.0	0.0
8	35.875	0.028	0.156	0.02	4.96e-06	0.28	9.23e-05	0.09	2.99e-05	0.0	0.0
9	37.355	0.027	0.155	0.10	3.19e-05	0.51	1.68e-04	0.44	1.46e-04	0.0	0.0
Risulta				3.028e+05		2.994e+05		12.22			
In				99.93		98.80		4.03e-03			
percentuale											

etaT/h	Cmb etaT	Pilas. inter. h	1000 eta	T/h	etaT	inter. h	Pilas.	1000 eta	T/h	etaT	inter. h	Pilas.	1000
				cm	cm			cm	cm			cm	cm
	37	25	0.15	0.02	150.0	26	0.19	0.03	150.0	27	0.15	0.02	150.0
		28	0.16	0.02	150.0	29	0.17	0.03	150.0	30	0.18	0.03	150.0
		31	0.20	0.03	150.0	32	0.21	0.03	150.0	33	0.22	0.03	150.0
		34	0.23	0.03	150.0	35	0.23	0.03	150.0	36	0.23	0.03	150.0
		37	0.23	0.03	150.0	38	0.22	0.03	150.0	39	0.22	0.03	150.0
		40	0.21	0.03	150.0	68	0.18	0.03	150.0	81	0.21	0.03	150.0
		82	0.20	0.03	150.0	83	0.24	0.04	150.0	84	0.20	0.03	150.0
		85	0.18	0.03	150.0	86	0.19	0.03	150.0	87	0.24	0.04	150.0
		88	0.24	0.04	150.0	89	0.24	0.04	150.0	90	0.23	0.03	150.0
		91	0.25	0.04	150.0	92	0.25	0.04	150.0	93	0.25	0.04	150.0
		94	0.22	0.03	150.0	95	0.23	0.03	150.0	96	0.18	0.03	150.0
		97	0.19	0.03	150.0	98	0.23	0.04	150.0	100	0.18	0.03	150.0
		101	0.18	0.03	150.0	102	0.16	0.02	150.0	103	0.22	0.03	150.0
		104	0.17	0.03	150.0								
	38	25	0.20	0.03	150.0	26	0.14	0.02	150.0	27	0.21	0.03	150.0
		28	0.22	0.03	150.0	29	0.23	0.03	150.0	30	0.23	0.03	150.0
		31	0.23	0.04	150.0	32	0.23	0.04	150.0	33	0.23	0.03	150.0
		34	0.22	0.03	150.0	35	0.21	0.03	150.0	36	0.20	0.03	150.0
		37	0.19	0.03	150.0	38	0.18	0.03	150.0	39	0.16	0.02	150.0
		40	0.15	0.02	150.0	68	0.18	0.03	150.0	81	0.23	0.03	150.0
		82	0.22	0.03	150.0	83	0.24	0.04	150.0	84	0.18	0.03	150.0
		85	0.19	0.03	150.0	86	0.19	0.03	150.0	87	0.22	0.03	150.0
		88	0.23	0.03	150.0	89	0.24	0.04	150.0	90	0.24	0.04	150.0
		91	0.24	0.04	150.0	92	0.24	0.04	150.0	93	0.24	0.04	150.0
		94	0.18	0.03	150.0	95	0.20	0.03	150.0	96	0.21	0.03	150.0
		97	0.16	0.02	150.0	98	0.21	0.03	150.0	100	0.19	0.03	150.0
		101	0.17	0.03	150.0	102	0.20	0.03	150.0	103	0.18	0.03	150.0
	00	104	0.20	0.03	150.0	00	0.45	0.00	450.0	07	0.00	0.00	450.0
	39	25	0.19	0.03	150.0	26	0.15	0.02	150.0	27	0.20	0.03	150.0
		28	0.21	0.03	150.0	29	0.22	0.03	150.0	30	0.23	0.03	150.0
		31	0.23	0.03	150.0	32	0.23	0.03	150.0	33	0.23	0.03	150.0 150.0
		34	0.23	0.03	150.0	35	0.22	0.03	150.0	36	0.21	0.03	
		37 40	0.19 0.16	0.03	150.0 150.0	38	0.18 0.19	0.03 0.03	150.0	39	0.17 0.24	0.03 0.04	150.0 150.0
				0.02	150.0	68			150.0	81	0.24		150.0
		82 85	0.23 0.20	0.03 0.03	150.0	83	0.25 0.18	0.04 0.03	150.0 150.0	84	0.17	0.03 0.03	150.0
			0.20	0.03	150.0	86 89	0.16	0.03	150.0	87 90	0.21	0.03	150.0
		88 91	0.23	0.03	150.0	92	0.25	0.04	150.0		0.24	0.04	150.0
		94	0.23		150.0		0.24			93			150.0
		94 97	0.17	0.03	150.0	95 98	0.19	0.03 0.03	150.0 150.0	96 100	0.23 0.18	0.03	150.0
		101	0.17	0.03	150.0	102	0.20	0.03	150.0	100	0.16	0.03	150.0
		101	0.16	0.03	150.0	102	0.10	0.03	130.0	103	0.10	0.02	130.0
	40	104 25	0.22	0.03	150.0	26	0.20	0.03	150.0	27	0.14	0.02	150.0
	40	25 28	0.13	0.02	150.0	20 29	0.20	0.03	150.0	30	0.14	0.02	150.0
		20 31	0.15	0.02	150.0	32	0.16	0.02	150.0	33	0.16	0.03	150.0
		34	0.19	0.03	150.0	32 35	0.21	0.03	150.0	36	0.22	0.03	150.0
		3 4 37	0.23	0.03	150.0	38	0.23	0.04	150.0	39	0.24	0.04	150.0
			0.24	0.04	130.0		0.20	0.00	130.0	JJ	0.20	0.00	100.0

	40	0.22	0.03	150.0	68	0.19	0.03	150.0	81	0.22	0.03	150.0
	82	0.21	0.03	150.0	83	0.25	0.04	150.0	84	0.19	0.03	150.0
	85 88	0.19 0.24	0.03 0.04	150.0 150.0	86 89	0.18 0.24	0.03 0.04	150.0 150.0	87 90	0.23 0.23	0.04 0.03	150.0 150.0
	91	0.24	0.04	150.0	92	0.25	0.04	150.0	93	0.25	0.04	150.0
	94	0.21	0.03	150.0	95	0.22	0.03	150.0	96	0.19	0.03	150.0
	97	0.20	0.03	150.0	98	0.23	0.03	150.0	100	0.17	0.02	150.0
	101	0.19	0.03	150.0	102	0.15	0.02	150.0	103	0.20	0.03	150.0
41	104 25	0.18 0.15	0.03 0.02	150.0 150.0	26	0.19	0.03	150.0	27	0.16	0.02	150.0
71	28	0.17	0.03	150.0	29	0.18	0.03	150.0	30	0.19	0.03	150.0
	31	0.21	0.03	150.0	32	0.22	0.03	150.0	33	0.22	0.03	150.0
	34	0.23	0.03	150.0	35	0.23	0.03	150.0	36	0.23	0.03	150.0
	37 40	0.23 0.20	0.03 0.03	150.0 150.0	38	0.22 0.18	0.03 0.03	150.0 150.0	39	0.21 0.20	0.03 0.03	150.0 150.0
	82	0.20	0.03	150.0	68 83	0.18	0.03	150.0	81 84	0.20	0.03	150.0
	85	0.17	0.03	150.0	86	0.19	0.03	150.0	87	0.24	0.04	150.0
	88	0.25	0.04	150.0	89	0.23	0.03	150.0	90	0.21	0.03	150.0
	91	0.25	0.04	150.0	92	0.25	0.04	150.0	93	0.24	0.04	150.0
	94 97	0.22 0.18	0.03 0.03	150.0 150.0	95 98	0.23 0.24	0.03 0.04	150.0 150.0	96 100	0.17 0.18	0.03 0.03	150.0 150.0
	101	0.18	0.03	150.0	102	0.24	0.04	150.0	103	0.10	0.03	150.0
	104	0.16	0.02	150.0	.02	0.11	0.00	100.0	100	0.22	0.00	100.0
42	25	0.20	0.03	150.0	26	0.13	0.02	150.0	27	0.22	0.03	150.0
	28	0.22	0.03	150.0	29	0.23	0.03	150.0	30	0.24	0.04	150.0
	31 34	0.24 0.22	0.04 0.03	150.0 150.0	32 35	0.23 0.21	0.04 0.03	150.0 150.0	33 36	0.23 0.19	0.03 0.03	150.0 150.0
	37	0.22	0.03	150.0	38	0.21	0.03	150.0	39	0.15	0.03	150.0
	40	0.14	0.02	150.0	68	0.18	0.03	150.0	81	0.23	0.03	150.0
	82	0.22	0.03	150.0	83	0.24	0.04	150.0	84	0.19	0.03	150.0
	85	0.19	0.03	150.0	86	0.19	0.03	150.0	87	0.23	0.03	150.0
	88 91	0.24 0.24	0.04 0.04	150.0 150.0	89 92	0.24 0.25	0.04 0.04	150.0 150.0	90 93	0.23 0.25	0.04 0.04	150.0 150.0
	94	0.19	0.04	150.0	95	0.20	0.04	150.0	96	0.23	0.04	150.0
	97	0.15	0.02	150.0	98	0.22	0.03	150.0	100	0.20	0.03	150.0
	101	0.17	0.02	150.0	102	0.20	0.03	150.0	103	0.18	0.03	150.0
42	104	0.20	0.03	150.0	26	0.15	0.00	150.0	27	0.21	0.02	150.0
43	25 28	0.19 0.22	0.03 0.03	150.0 150.0	26 29	0.15 0.23	0.02 0.03	150.0 150.0	27 30	0.21 0.23	0.03 0.03	150.0 150.0
	31	0.23	0.04	150.0	32	0.23	0.03	150.0	33	0.23	0.03	150.0
	34	0.22	0.03	150.0	35	0.21	0.03	150.0	36	0.20	0.03	150.0
	37	0.18	0.03	150.0	38	0.17	0.03	150.0	39	0.16	0.02	150.0
	40 82	0.15 0.23	0.02 0.03	150.0 150.0	68 83	0.19 0.25	0.03 0.04	150.0 150.0	81 84	0.23 0.18	0.04 0.03	150.0 150.0
	85	0.20	0.03	150.0	86	0.23	0.04	150.0	87	0.18	0.03	150.0
	88	0.24	0.04	150.0	89	0.24	0.04	150.0	90	0.24	0.04	150.0
	91	0.24	0.04	150.0	92	0.25	0.04	150.0	93	0.25	0.04	150.0
	94	0.18	0.03	150.0	95	0.20	0.03	150.0	96	0.22	0.03	150.0
	97 101	0.16 0.18	0.02 0.03	150.0 150.0	98 102	0.21 0.19	0.03 0.03	150.0 150.0	100 103	0.19 0.17	0.03 0.03	150.0 150.0
	104	0.22	0.03	150.0	.02	0.10	0.00	100.0	100	0.17	0.00	100.0
44	25	0.14	0.02	150.0	26	0.20	0.03	150.0	27	0.15	0.02	150.0
	28	0.16	0.02	150.0	29	0.18	0.03	150.0	30	0.19	0.03	150.0
	31 34	0.20 0.23	0.03 0.03	150.0 150.0	32 35	0.21 0.23	0.03 0.03	150.0 150.0	33 36	0.22 0.23	0.03 0.04	150.0 150.0
	37	0.23	0.03	150.0	38	0.23	0.03	150.0	39	0.22	0.03	150.0
	40	0.21	0.03	150.0	68	0.19	0.03	150.0	81	0.21	0.03	150.0
	82	0.20	0.03	150.0	83	0.24	0.04	150.0	84	0.19	0.03	150.0
	85 88	0.18 0.24	0.03 0.04	150.0 150.0	86 89	0.18 0.23	0.03 0.03	150.0 150.0	87 90	0.24 0.22	0.04 0.03	150.0 150.0
	91	0.24	0.04	150.0	92	0.23	0.03	150.0	93	0.22	0.03	150.0
	94	0.21	0.03	150.0	95	0.22	0.03	150.0	96	0.18	0.03	150.0
	97	0.20	0.03	150.0	98	0.23	0.03	150.0	100	0.17	0.03	150.0
	101	0.19	0.03	150.0	102	0.16	0.02	150.0	103	0.20	0.03	150.0
45	104 25	0.18 0.18	0.03 0.03	150.0 150.0	26	0.20	0.03	150.0	27	0.18	0.03	150.0
40	28	0.20	0.03	150.0	29	0.21	0.03	150.0	30	0.22	0.03	150.0
	31	0.23	0.03	150.0	32	0.24	0.04	150.0	33	0.24	0.04	150.0
	34	0.24	0.04	150.0	35	0.24	0.04	150.0	36	0.24	0.04	150.0
	37	0.24	0.04	150.0	38	0.23	0.03	150.0	39	0.22	0.03	150.0
	40 82	0.21 0.16	0.03 0.02	150.0 150.0	68 83	0.17 0.21	0.03 0.03	150.0 150.0	81 84	0.18 0.20	0.03 0.03	150.0 150.0
	85	0.16	0.02	150.0	86	0.19	0.03	150.0	87	0.23	0.03	150.0
	88	0.23	0.04	150.0	89	0.20	0.03	150.0	90	0.19	0.03	150.0
	91	0.23	0.03	150.0	92	0.23	0.03	150.0	93	0.22	0.03	150.0
	94 97	0.21 0.19	0.03 0.03	150.0 150.0	95 98	0.22 0.23	0.03 0.03	150.0 150.0	96 100	0.15 0.19	0.02 0.03	150.0 150.0
	97 101	0.19	0.03	150.0	98 102	0.23 0.18	0.03	150.0	100	0.19	0.03	150.0
	101	J. 10	5.00	.00.0	102		3.00	100.0	100	0.20	3.00	.00.0

	104	0.14	0.02	150.0								
46	25	0.22	0.03	150.0	26	0.17	0.02	150.0	27	0.22	0.03	150.0
	28	0.23	0.03	150.0	29	0.23	0.04	150.0	30	0.24	0.04	150.0
	31	0.24	0.04	150.0	32	0.25	0.04	150.0	33	0.25	0.04	150.0
	34	0.25	0.04	150.0	35	0.24	0.04	150.0	36	0.24	0.04	150.0
	37	0.23	0.03	150.0	38	0.21	0.03	150.0	39	0.20	0.03	150.0
	40	0.18	0.03	150.0	68	0.19	0.03	150.0	81	0.23	0.03	150.0
	82	0.22	0.03	150.0	83	0.23	0.03	150.0	84	0.16	0.02	150.0
	85	0.19	0.03	150.0	86	0.18	0.03	150.0	87	0.18	0.03	150.0
	88	0.20	0.03	150.0	89	0.23	0.04	150.0	90	0.23	0.03	150.0
	91	0.21	0.03	150.0	92	0.22	0.03	150.0	93	0.23	0.03	150.0
	94	0.15	0.02	150.0	95	0.16	0.02	150.0	96	0.21	0.03	150.0
	97	0.18	0.03	150.0	98	0.17	0.03	150.0	100	0.19	0.03	150.0
	101	0.18	0.03	150.0	102	0.20	0.03	150.0	103	0.15	0.02	150.0
	104	0.19	0.03	150.0								
47	25	0.20	0.03	150.0	26	0.18	0.03	150.0	27	0.21	0.03	150.0
	28	0.22	0.03	150.0	29	0.23	0.03	150.0	30	0.23	0.04	150.0
	31	0.24	0.04	150.0	32	0.24	0.04	150.0	33	0.25	0.04	150.0
	34	0.25	0.04	150.0	35	0.25	0.04	150.0	36	0.24	0.04	150.0
	37	0.23	0.03	150.0	38	0.22	0.03	150.0	39	0.21	0.03	150.0
	40	0.19	0.03	150.0	68	0.20	0.03	150.0	81	0.23	0.03	150.0
	82	0.22	0.03	150.0	83	0.23	0.04	150.0	84	0.15	0.02	150.0
	85	0.20	0.03	150.0	86	0.17	0.02	150.0	87	0.18	0.03	150.0
	88	0.19	0.03	150.0	89	0.24	0.04	150.0	90	0.24	0.04	150.0
	91	0.21	0.03	150.0	92	0.22	0.03	150.0	93	0.23	0.03	150.0
	94	0.14	0.02	150.0	95	0.15	0.02	150.0	96	0.22	0.03	150.0
	97	0.19	0.03	150.0	98	0.16	0.02	150.0	100	0.18	0.03	150.0
	101	0.19	0.03	150.0	102	0.19	0.03	150.0	103	0.13	0.02	150.0
	104	0.20	0.03	150.0								
48	25	0.16	0.02	150.0	26	0.22	0.03	150.0	27	0.17	0.03	150.0
	28	0.19	0.03	150.0	29	0.20	0.03	150.0	30	0.21	0.03	150.0
	31	0.23	0.03	150.0	32	0.23	0.04	150.0	33	0.24	0.04	150.0
	34	0.24	0.04	150.0	35	0.25	0.04	150.0	36	0.25	0.04	150.0
	37	0.24	0.04	150.0	38	0.24	0.04	150.0	39	0.23	0.03	150.0
	40	0.23	0.03	150.0	68	0.18	0.03	150.0	81	0.18	0.03	150.0
	82	0.17	0.03	150.0	83	0.22	0.03	150.0	84	0.18	0.03	150.0
	85	0.17	0.03	150.0	86	0.18	0.03	150.0	87	0.23	0.03	150.0
	88	0.23	0.03	150.0	89	0.21	0.03	150.0	90	0.19	0.03	150.0
	91	0.23	0.03	150.0	92	0.23	0.03	150.0	93	0.22	0.03	150.0
	94	0.20	0.03	150.0	95	0.21	0.03	150.0	96	0.16	0.02	150.0
	97	0.20	0.03	150.0	98	0.22	0.03	150.0	100	0.18	0.03	150.0
	101	0.19	0.03	150.0	102	0.17	0.03	150.0	103	0.19	0.03	150.0
	104	0.15	0.02	150.0								
49	25	0.18	0.03	150.0	26	0.20	0.03	150.0	27	0.19	0.03	150.0
	28	0.20	0.03	150.0	29	0.22	0.03	150.0	30	0.23	0.03	150.0
	31	0.24	0.04	150.0	32	0.25	0.04	150.0	33	0.25	0.04	150.0
	34	0.25	0.04	150.0	35	0.24	0.04	150.0	36	0.24	0.04	150.0
	37	0.23	0.04	150.0	38	0.23	0.03	150.0	39	0.22	0.03	150.0
	40	0.21	0.03	150.0	68	0.17	0.02	150.0	81	0.16	0.02	150.0
	82	0.15	0.02	150.0	83	0.21	0.03	150.0	84	0.20	0.03	150.0
	85	0.15	0.02	150.0	86	0.20	0.03	150.0	87	0.24	0.04	150.0
	88	0.24	0.04	150.0	89	0.19	0.03	150.0	90	0.18	0.03	150.0
	91	0.23	0.04	150.0	92	0.23	0.03	150.0	93	0.22	0.03	150.0
	94	0.22	0.03	150.0	95	0.22	0.03	150.0	96	0.14	0.02	150.0
	97	0.19	0.03	150.0	98	0.23	0.03	150.0	100	0.19	0.03	150.0
	101	0.18	0.03	150.0	102	0.19	0.03	150.0	103	0.20	0.03	150.0
ΕO	104	0.13 0.22	0.02 0.03	150.0	26	0.16	0.02	150.0	27	0.22	0.03	150.0
50	25 28	0.22		150.0 150.0	26	0.16		150.0 150.0	30	0.22		150.0 150.0
	20 31	0.25	0.03 0.04	150.0	29 32	0.24	0.04 0.04	150.0	33	0.24	0.04 0.04	150.0
	34	0.23		150.0	35			150.0	36			150.0
	3 4 37	0.24	0.04 0.03	150.0	38	0.23 0.20	0.04 0.03	150.0	39	0.23 0.19	0.03 0.03	150.0
	40	0.21	0.03	150.0	68	0.20	0.03	150.0	81	0.19	0.03	150.0
	82	0.17	0.03	150.0	83	0.18	0.03	150.0	84	0.22	0.03	150.0
	85	0.21	0.03	150.0	86	0.23	0.03	150.0	87	0.17	0.03	150.0
	88	0.10	0.03	150.0	89	0.18	0.03	150.0	90	0.19	0.03	150.0
	91	0.21	0.03	150.0	92	0.23	0.03	150.0	93	0.23	0.03	150.0
	94	0.22	0.03	150.0	95	0.22	0.03	150.0	96	0.20	0.03	150.0
	97	0.17	0.02	150.0	98	0.18	0.03	150.0	100	0.19	0.03	150.0
	101	0.17	0.03	150.0	102	0.10	0.03	150.0	103	0.19	0.03	150.0
	104	0.10	0.03	150.0	102	0.20	0.00	100.0	100	0.10	0.02	100.0
51	25	0.19	0.03	150.0	26	0.17	0.03	150.0	27	0.21	0.03	150.0
J.	28	0.22	0.03	150.0	29	0.17	0.03	150.0	30	0.24	0.03	150.0
	31	0.24	0.03	150.0	32	0.24	0.03	150.0	33	0.24	0.04	150.0
	34	0.24	0.04	150.0	35	0.24	0.04	150.0	36	0.23	0.03	150.0
	37	0.22	0.03	150.0	38	0.21	0.03	150.0	39	0.20	0.03	150.0
	40	0.18	0.03	150.0	68	0.19	0.03	150.0	81	0.23	0.03	150.0
	82	0.22	0.03	150.0	83	0.23	0.03	150.0	84	0.16	0.02	150.0

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

	85	0.20	0.03	150.0	86	0.17	0.03	150.0	87	0.19	0.03	150.0
	88 91	0.20 0.21	0.03 0.03	150.0 150.0	89 92	0.23 0.22	0.04 0.03	150.0 150.0	90 93	0.23 0.23	0.03 0.03	150.0 150.0
	94	0.15	0.02	150.0	95	0.16	0.02	150.0	96	0.21	0.03	150.0
	97	0.18	0.03	150.0	98	0.18	0.03	150.0	100	0.18	0.03	150.0
	101 104	0.19 0.20	0.03 0.03	150.0 150.0	102	0.19	0.03	150.0	103	0.14	0.02	150.0
52	25	0.20	0.03	150.0	26	0.22	0.03	150.0	27	0.18	0.03	150.0
	28	0.20	0.03	150.0	29	0.21	0.03	150.0	30	0.23	0.03	150.0
	31	0.24	0.04	150.0	32	0.24	0.04	150.0	33	0.25	0.04	150.0
	34 37	0.25 0.24	0.04 0.04	150.0 150.0	35 38	0.25 0.23	0.04 0.04	150.0 150.0	36 39	0.24 0.23	0.04 0.03	150.0 150.0
	40	0.22	0.03	150.0	68	0.18	0.03	150.0	81	0.17	0.03	150.0
	82	0.16	0.02	150.0	83	0.21	0.03	150.0	84	0.19	0.03	150.0
	85 88	0.16 0.23	0.02 0.04	150.0 150.0	86 89	0.19 0.20	0.03 0.03	150.0 150.0	87 90	0.23 0.18	0.03 0.03	150.0 150.0
	91	0.23	0.04	150.0	92	0.23	0.03	150.0	93	0.18	0.03	150.0
	94	0.21	0.03	150.0	95	0.22	0.03	150.0	96	0.15	0.02	150.0
	97	0.20	0.03	150.0	98	0.23	0.03	150.0	100	0.18	0.03	150.0
	101 104	0.19 0.15	0.03 0.02	150.0 150.0	102	0.18	0.03	150.0	103	0.19	0.03	150.0
53	25	0.12	0.02	150.0	26	0.20	0.03	150.0	27	0.19	0.03	150.0
	28	0.26	0.04	150.0	29	0.32	0.05	150.0	30	0.37	0.06	150.0
	31 34	0.42 0.49	0.06 0.07	150.0 150.0	32 35	0.46 0.49	0.07 0.07	150.0 150.0	33 36	0.48 0.47	0.07 0.07	150.0 150.0
	37	0.49	0.07	150.0	38	0.49	0.07	150.0	39	0.47	0.07	150.0
	40	0.28	0.04	150.0	68	0.18	0.03	150.0	81	0.38	0.06	150.0
	82	0.32	0.05	150.0	83	0.48	0.07	150.0	84	0.16	0.02	150.0
	85 88	0.17 0.44	0.03 0.07	150.0 150.0	86 89	0.15 0.46	0.02 0.07	150.0 150.0	87 90	0.40 0.43	0.06 0.06	150.0 150.0
	91	0.47	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94	0.24	0.04	150.0	95	0.30	0.04	150.0	96	0.25	0.04	150.0
	97 101	0.19 0.18	0.03 0.03	150.0 150.0	98 102	0.35 0.12	0.05 0.02	150.0 150.0	100 103	0.13 0.19	0.02 0.03	150.0 150.0
	101	0.16	0.03	150.0	102	0.12	0.02	150.0	103	0.19	0.03	150.0
54	25	0.19	0.03	150.0	26	0.16	0.02	150.0	27	0.25	0.04	150.0
	28	0.30	0.05	150.0	29	0.35	0.05	150.0	30	0.40	0.06	150.0
	31 34	0.44 0.49	0.07 0.07	150.0 150.0	32 35	0.47 0.48	0.07 0.07	150.0 150.0	33 36	0.49 0.46	0.07 0.07	150.0 150.0
	37	0.43	0.07	150.0	38	0.40	0.06	150.0	39	0.32	0.05	150.0
	40	0.25	0.04	150.0	68	0.18	0.03	150.0	81	0.39	0.06	150.0
	82	0.34	0.05 0.03	150.0 150.0	83	0.49 0.14	0.07	150.0 150.0	84	0.13	0.02	150.0 150.0
	85 88	0.18 0.43	0.03	150.0	86 89	0.14	0.02 0.07	150.0	87 90	0.38 0.44	0.06 0.07	150.0
	91	0.46	0.07	150.0	92	0.48	0.07	150.0	93	0.49	0.07	150.0
	94	0.20	0.03	150.0	95	0.27	0.04	150.0	96	0.27	0.04	150.0
	97 101	0.16 0.17	0.02 0.03	150.0 150.0	98 102	0.33 0.17	0.05 0.02	150.0 150.0	100 103	0.15 0.13	0.02 0.02	150.0 150.0
	104	0.20	0.03	150.0	102	0.17	0.02	150.0	100	0.10	0.02	150.0
55	25	0.18	0.03	150.0	26	0.16	0.02	150.0	27	0.24	0.04	150.0
	28 31	0.30 0.44	0.04 0.07	150.0 150.0	29 32	0.35 0.47	0.05 0.07	150.0 150.0	30 33	0.40 0.49	0.06 0.07	150.0 150.0
	34	0.44	0.07	150.0	35	0.48	0.07	150.0	36	0.49	0.07	150.0
	37	0.42	0.06	150.0	38	0.37	0.06	150.0	39	0.31	0.05	150.0
	40	0.24	0.04	150.0	68	0.18	0.03	150.0	81	0.39	0.06	150.0
	82 85	0.34 0.19	0.05 0.03	150.0 150.0	83 86	0.49 0.14	0.07 0.02	150.0 150.0	84 87	0.13 0.38	0.02 0.06	150.0 150.0
	88	0.43	0.06	150.0	89	0.47	0.07	150.0	90	0.44	0.07	150.0
	91	0.46	0.07	150.0	92	0.48	0.07	150.0	93	0.49	0.07	150.0
	94 97	0.21 0.16	0.03 0.02	150.0 150.0	95 98	0.27 0.33	0.04 0.05	150.0 150.0	96 100	0.28 0.15	0.04 0.02	150.0 150.0
	101	0.10	0.02	150.0	102	0.33	0.03	150.0	103	0.13	0.02	150.0
	104	0.21	0.03	150.0								
56	25	0.13	0.02	150.0	26	0.21	0.03	150.0	27	0.20	0.03	150.0
	28 31	0.26 0.42	0.04 0.06	150.0 150.0	29 32	0.32 0.46	0.05 0.07	150.0 150.0	30 33	0.37 0.48	0.06 0.07	150.0 150.0
	34	0.49	0.07	150.0	35	0.49	0.07	150.0	36	0.47	0.07	150.0
	37	0.44	0.07	150.0	38	0.40	0.06	150.0	39	0.35	0.05	150.0
	40	0.29	0.04	150.0	68 83	0.18	0.03	150.0	81 84	0.38	0.06	150.0
	82 85	0.32 0.17	0.05 0.03	150.0 150.0	83 86	0.49 0.14	0.07 0.02	150.0 150.0	84 87	0.15 0.39	0.02 0.06	150.0 150.0
	88	0.43	0.07	150.0	89	0.46	0.07	150.0	90	0.43	0.06	150.0
	91	0.47	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94 97	0.24 0.20	0.04 0.03	150.0 150.0	95 98	0.29 0.35	0.04 0.05	150.0 150.0	96 100	0.25 0.13	0.04 0.02	150.0 150.0
	101	0.20	0.03	150.0	102	0.33	0.03	150.0	103	0.13	0.02	150.0
	104	0.16	0.02	150.0								
57	25	0.13	0.02	150.0	26	0.20	0.03	150.0	27	0.20	0.03	150.0

Prog. e D.L. Strutturale: Ing. Enrico Tasselli 172

	28	0.27	0.04	150.0	29	0.33	0.05	150.0	30	0.38	0.06	150.0
	31	0.43	0.06	150.0	32	0.46	0.07	150.0	33	0.48	0.07	150.0
	34	0.49	0.07	150.0	35	0.49	0.07	150.0	36	0.47	0.07	150.0
	37	0.43	0.06	150.0	38	0.39	0.06	150.0	39	0.34	0.05	150.0
	40	0.43	0.04	150.0	68	0.33	0.03	150.0	81	0.37	0.06	150.0
	82	0.20	0.04	150.0	83	0.48	0.03	150.0	84	0.37	0.02	150.0
												150.0
	85	0.16	0.02	150.0	86	0.15	0.02	150.0	87	0.40	0.06	150.0
	88	0.44	0.07	150.0	89	0.46	0.07	150.0	90	0.42	0.06	150.0
	91	0.47	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94	0.25	0.04	150.0	95	0.30	0.05	150.0	96	0.24	0.04	150.0
	97	0.18	0.03	150.0	98	0.35	0.05	150.0	100	0.14	0.02	150.0
	101	0.17	0.03	150.0	102	0.13	0.02	150.0	103	0.19	0.03	150.0
	104	0.16	0.02	150.0								
58	25	0.19	0.03	150.0	26	0.17	0.03	150.0	27	0.24	0.04	150.0
	28	0.30	0.04	150.0	29	0.35	0.05	150.0	30	0.40	0.06	150.0
	31	0.44	0.07	150.0	32	0.47	0.07	150.0	33	0.49	0.07	150.0
	34	0.49	0.07	150.0	35	0.48	0.07	150.0	36	0.46	0.07	150.0
	37	0.43	0.06	150.0	38	0.38	0.06	150.0	39	0.33	0.05	150.0
	40	0.26	0.04	150.0	68	0.19	0.03	150.0	81	0.40	0.06	150.0
	82	0.20	0.04	150.0	83	0.19	0.03	150.0	84	0.40	0.00	150.0
						0.49						
	85	0.19	0.03	150.0	86		0.02	150.0	87	0.37	0.06	150.0
	88	0.42	0.06	150.0	89	0.47	0.07	150.0	90	0.44	0.07	150.0
	91	0.46	0.07	150.0	92	0.48	0.07	150.0	93	0.49	0.07	150.0
	94	0.19	0.03	150.0	95	0.26	0.04	150.0	96	0.28	0.04	150.0
	97	0.17	0.03	150.0	98	0.32	0.05	150.0	100	0.15	0.02	150.0
	101	0.18	0.03	150.0	102	0.16	0.02	150.0	103	0.12	0.02	150.0
	104	0.20	0.03	150.0								
59	25	0.17	0.03	150.0	26	0.16	0.02	150.0	27	0.24	0.04	150.0
	28	0.29	0.04	150.0	29	0.35	0.05	150.0	30	0.39	0.06	150.0
	31	0.43	0.07	150.0	32	0.47	0.07	150.0	33	0.49	0.07	150.0
	34	0.49	0.07	150.0	35	0.48	0.07	150.0	36	0.46	0.07	150.0
	37	0.43	0.06	150.0	38	0.38	0.06	150.0	39	0.32	0.05	150.0
	40	0.45	0.00	150.0	68	0.38	0.03	150.0	81	0.32	0.05	150.0
	82	0.35	0.05	150.0	83	0.49	0.07	150.0	84	0.12	0.02	150.0
	85	0.20	0.03	150.0	86	0.13	0.02	150.0	87	0.37	0.06	150.0
	88	0.42	0.06	150.0	89	0.47	0.07	150.0	90	0.44	0.07	150.0
	91	0.46	0.07	150.0	92	0.48	0.07	150.0	93	0.49	0.07	150.0
	94	0.20	0.03	150.0	95	0.26	0.04	150.0	96	0.28	0.04	150.0
	97	0.17	0.03	150.0	98	0.32	0.05	150.0	100	0.14	0.02	150.0
	101	0.18	0.03	150.0	102	0.15	0.02	150.0	103	0.12	0.02	150.0
	104	0.21	0.03	150.0								
60	25	0.13	0.02	150.0	26	0.21	0.03	150.0	27	0.21	0.03	150.0
	28	0.27	0.04	150.0	29	0.33	0.05	150.0	30	0.38	0.06	150.0
	31	0.43	0.06	150.0	32	0.46	0.07	150.0	33	0.48	0.07	150.0
	34	0.49	0.07	150.0	35	0.49	0.07	150.0	36	0.47	0.07	150.0
	37	0.43	0.07	150.0	38	0.39	0.06	150.0	39	0.34	0.05	150.0
	40	0.43	0.04	150.0	68	0.33	0.03	150.0	81	0.37	0.06	150.0
	82	0.31	0.05	150.0	83	0.48	0.07	150.0	84	0.16	0.02	150.0
	85	0.16	0.02	150.0	86	0.15	0.02	150.0	87	0.40	0.06	150.0
	88	0.44	0.07	150.0	89	0.46	0.07	150.0	90	0.42	0.06	150.0
	91	0.47	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94	0.24	0.04	150.0	95	0.30	0.04	150.0	96	0.24	0.04	150.0
	97	0.19	0.03	150.0	98	0.35	0.05	150.0	100	0.14	0.02	150.0
	101	0.18	0.03	150.0	102	0.13	0.02	150.0	103	0.18	0.03	150.0
	104	0.15	0.02	150.0								
61	25	0.15	0.02	150.0	26	0.18	0.03	150.0	27	0.24	0.04	150.0
	28	0.31	0.05	150.0	29	0.37	0.06	150.0	30	0.42	0.06	150.0
	31	0.46	0.07	150.0	32	0.48	0.07	150.0	33	0.49	0.07	150.0
	34	0.49	0.07	150.0	35	0.47	0.07	150.0	36	0.44	0.07	150.0
	37	0.40	0.06	150.0	38	0.35	0.05	150.0	39	0.30	0.05	150.0
	40	0.24	0.04	150.0	68	0.14	0.02	150.0	81	0.33	0.05	150.0
	82	0.27	0.04	150.0	83	0.46	0.02	150.0	84	0.19	0.03	150.0
			0.04	150.0								150.0
	85	0.13			86	0.18	0.03	150.0	87	0.43	0.07	
	88	0.47	0.07	150.0	89	0.43	0.06	150.0	90	0.38	0.06	150.0
	91	0.49	0.07	150.0	92	0.49	0.07	150.0	93	0.48	0.07	150.0
	94	0.28	0.04	150.0	95	0.34	0.05	150.0	96	0.21	0.03	150.0
	97	0.16	0.02	150.0	98	0.39	0.06	150.0	100	0.17	0.03	150.0
	101	0.15	0.02	150.0	102	0.16	0.02	150.0	103	0.21	0.03	150.0
	104	0.13	0.02	150.0								
62	25	0.21	0.03	150.0	26	0.13	0.02	150.0	27	0.28	0.04	150.0
	28	0.34	0.05	150.0	29	0.40	0.06	150.0	30	0.44	0.07	150.0
	31	0.47	0.07	150.0	32	0.49	0.07	150.0	33	0.49	0.07	150.0
	34	0.48	0.07	150.0	35	0.46	0.07	150.0	36	0.42	0.06	150.0
	37	0.37	0.06	150.0	38	0.32	0.05	150.0	39	0.26	0.04	150.0
	40	0.20	0.03	150.0	68	0.14	0.02	150.0	81	0.35	0.05	150.0
	82	0.29	0.03	150.0	83	0.47	0.02	150.0	84	0.17	0.03	150.0
	85	0.29	0.04	150.0	86	0.47	0.07	150.0	87	0.17	0.03	150.0
	88	0.15	0.02	150.0	89	0.18	0.03	150.0	90	0.43	0.06	150.0
	00	0.40	0.07	130.0	US	0.44	0.07	130.0	30	0.40	0.00	130.0

	91	0.48	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94 97	0.25 0.12	0.04 0.02	150.0 150.0	95 98	0.32 0.38	0.05 0.06	150.0 150.0	96 100	0.24 0.19	0.04 0.03	150.0 150.0
	101	0.13	0.02	150.0	102	0.20	0.03	150.0	103	0.16	0.02	150.0
63	104 25	0.17 0.20	0.03 0.03	150.0 150.0	26	0.12	0.02	150.0	27	0.28	0.04	150.0
00	28	0.34	0.05	150.0	29	0.40	0.06	150.0	30	0.44	0.07	150.0
	31 34	0.47 0.48	0.07 0.07	150.0 150.0	32 35	0.49 0.46	0.07 0.07	150.0 150.0	33 36	0.49 0.42	0.07 0.06	150.0 150.0
	3 4 37	0.46	0.07	150.0	38	0.46	0.07	150.0	39	0.42	0.06	150.0
	40	0.20	0.03	150.0	68	0.15	0.02	150.0	81	0.35	0.05	150.0
	82 85	0.30 0.16	0.04 0.02	150.0 150.0	83 86	0.47 0.18	0.07 0.03	150.0 150.0	84 87	0.17 0.43	0.03 0.06	150.0 150.0
	88	0.46	0.02	150.0	89	0.10	0.03	150.0	90	0.40	0.06	150.0
	91	0.48	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94 97	0.25 0.12	0.04 0.02	150.0 150.0	95 98	0.32 0.38	0.05 0.06	150.0 150.0	96 100	0.24 0.19	0.04 0.03	150.0 150.0
	101	0.13	0.02	150.0	102	0.19	0.03	150.0	103	0.17	0.03	150.0
0.4	104	0.19	0.03	150.0	00	0.40	0.00	450.0	07	0.04	0.04	450.0
64	25 28	0.16 0.31	0.02 0.05	150.0 150.0	26 29	0.19 0.37	0.03 0.06	150.0 150.0	27 30	0.24 0.42	0.04 0.06	150.0 150.0
	31	0.46	0.07	150.0	32	0.48	0.07	150.0	33	0.49	0.07	150.0
	34	0.49	0.07	150.0	35	0.47	0.07	150.0	36	0.44	0.07	150.0
	37 40	0.40 0.25	0.06 0.04	150.0 150.0	38 68	0.35 0.14	0.05 0.02	150.0 150.0	39 81	0.31 0.33	0.05 0.05	150.0 150.0
	82	0.27	0.04	150.0	83	0.46	0.07	150.0	84	0.18	0.03	150.0
	85	0.13	0.02	150.0	86	0.18	0.03	150.0	87	0.43	0.07	150.0
	88 91	0.47 0.49	0.07 0.07	150.0 150.0	89 92	0.43 0.49	0.06 0.07	150.0 150.0	90 93	0.38 0.48	0.06 0.07	150.0 150.0
	94	0.27	0.04	150.0	95	0.33	0.05	150.0	96	0.20	0.03	150.0
	97	0.17	0.02	150.0	98	0.39	0.06	150.0	100	0.17	0.03	150.0
	101 104	0.15 0.13	0.02 0.02	150.0 150.0	102	0.16	0.02	150.0	103	0.20	0.03	150.0
65	25	0.16	0.02	150.0	26	0.18	0.03	150.0	27	0.25	0.04	150.0
	28	0.32	0.05	150.0	29	0.38	0.06	150.0	30	0.43	0.06	150.0
	31 34	0.46 0.49	0.07 0.07	150.0 150.0	32 35	0.48 0.47	0.07 0.07	150.0 150.0	33 36	0.49 0.44	0.07 0.07	150.0 150.0
	37	0.39	0.06	150.0	38	0.34	0.05	150.0	39	0.29	0.04	150.0
	40	0.24	0.04	150.0	68	0.13	0.02	150.0	81	0.32	0.05	150.0
	82 85	0.26 0.12	0.04 0.02	150.0 150.0	83 86	0.46 0.19	0.07 0.03	150.0 150.0	84 87	0.20 0.44	0.03 0.07	150.0 150.0
	88	0.47	0.07	150.0	89	0.42	0.06	150.0	90	0.38	0.06	150.0
	91	0.49	0.07	150.0	92	0.49	0.07	150.0	93	0.48	0.07	150.0
	94 97	0.28 0.15	0.04 0.02	150.0 150.0	95 98	0.34 0.40	0.05 0.06	150.0 150.0	96 100	0.20 0.18	0.03 0.03	150.0 150.0
	101	0.14	0.02	150.0	102	0.17	0.03	150.0	103	0.21	0.03	150.0
00	104	0.13	0.02	150.0	00	0.40	0.00	450.0	07	0.00	0.04	450.0
66	25 28	0.21 0.34	0.03 0.05	150.0 150.0	26 29	0.13 0.39	0.02 0.06	150.0 150.0	27 30	0.28 0.43	0.04 0.07	150.0 150.0
	31	0.47	0.07	150.0	32	0.49	0.07	150.0	33	0.49	0.07	150.0
	34	0.48	0.07	150.0	35	0.46	0.07	150.0	36	0.43	0.06	150.0
	37 40	0.38 0.21	0.06 0.03	150.0 150.0	38 68	0.33 0.15	0.05 0.02	150.0 150.0	39 81	0.27 0.35	0.04 0.05	150.0 150.0
	82	0.30	0.04	150.0	83	0.47	0.07	150.0	84	0.16	0.02	150.0
	85	0.16	0.02	150.0	86	0.17	0.03	150.0	87	0.42	0.06	150.0
	88 91	0.46 0.48	0.07 0.07	150.0 150.0	89 92	0.44 0.49	0.07 0.07	150.0 150.0	90 93	0.40 0.49	0.06 0.07	150.0 150.0
	94	0.24	0.04	150.0	95	0.31	0.05	150.0	96	0.24	0.04	150.0
	97	0.13	0.02	150.0	98	0.37	0.06	150.0	100	0.18	0.03	150.0
	101 104	0.14 0.18	0.02 0.03	150.0 150.0	102	0.19	0.03	150.0	103	0.15	0.02	150.0
67	25	0.20	0.03	150.0	26	0.13	0.02	150.0	27	0.27	0.04	150.0
	28	0.33	0.05	150.0	29	0.39	0.06	150.0	30	0.43	0.07	150.0
	31 34	0.47 0.48	0.07 0.07	150.0 150.0	32 35	0.49 0.46	0.07 0.07	150.0 150.0	33 36	0.49 0.43	0.07 0.06	150.0 150.0
	37	0.38	0.06	150.0	38	0.33	0.05	150.0	39	0.27	0.04	150.0
	40	0.21	0.03	150.0	68	0.15	0.02	150.0	81	0.36	0.05	150.0
	82 85	0.30 0.17	0.05 0.02	150.0 150.0	83 86	0.47 0.17	0.07 0.03	150.0 150.0	84 87	0.16 0.42	0.02 0.06	150.0 150.0
	88	0.46	0.07	150.0	89	0.44	0.07	150.0	90	0.40	0.06	150.0
	91	0.48	0.07	150.0	92	0.49	0.07	150.0	93	0.49	0.07	150.0
	94 97	0.24 0.13	0.04 0.02	150.0 150.0	95 98	0.31 0.37	0.05 0.06	150.0 150.0	96 100	0.25 0.18	0.04 0.03	150.0 150.0
	101	0.14	0.02	150.0	102	0.37	0.03	150.0	103	0.16	0.03	150.0
60	104	0.19	0.03	150.0								
68	25 28	0.17 0.32	0.03 0.05	150.0 150.0	26 29	0.19 0.38	0.03 0.06	150.0 150.0	27 30	0.25 0.43	0.04 0.06	150.0 150.0
	31	0.46	0.07	150.0	32	0.48	0.07	150.0	33	0.49	0.07	150.0

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

34	0.49	0.07	150.0	35	0.47	0.07	150.0	36	0.44	0.07	150.0
37	0.40	0.06	150.0	38	0.35	0.05	150.0	39	0.30	0.04	150.0
40	0.25	0.04	150.0	68	0.13	0.02	150.0	81	0.32	0.05	150.0
82	0.26	0.04	150.0	83	0.46	0.07	150.0	84	0.19	0.03	150.0
85	0.12	0.02	150.0	86	0.19	0.03	150.0	87	0.44	0.07	150.0
88	0.47	0.07	150.0	89	0.42	0.06	150.0	90	0.38	0.06	150.0
91	0.49	0.07	150.0	92	0.49	0.07	150.0	93	0.48	0.07	150.0
94	0.28	0.04	150.0	95	0.34	0.05	150.0	96	0.19	0.03	150.0
97	0.16	0.02	150.0	98	0.40	0.06	150.0	100	0.18	0.03	150.0
101	0.14	0.02	150.0	102	0.17	0.03	150.0	103	0.20	0.03	150.0
104	0.12	0.02	150.0								

Cmb 1000 etaT/h

0.49

VERIFICHE ELEMENTI ESISTENTI LEGENDA TABELLA VERIFICHE ELEMENTI ESISTENTI

Le verifiche degli elementi esistenti sono state condotte con riferimento al Capitolo 8 del D.M. 17 gennaio 2018. Il metodo adottato è quello previsto nella circolare n.7 del 21 gennaio 2019 al punto C8.7.2.2.1 / C8.7.2.2.2 (Analisi statica lineare/dinamica modale con spettro elastico).

Le modalità di analisi e le verifiche, consistono nel confronto tra domanda e capacità.

Il programma consente di effettuare analisi lineare statica e dinamica e analisi non lineare statica. Qualora l'analisi effettuata sia lineare le verifiche sono precedute da un controllo di accettazione del modello lineare, atto a valutare la dispersione dei rapporti domanda/capacità.

Per gli elementi in c.a. sono previste le seguenti verifiche:

flessione con e senza sforzo normale taglio nodi trave-pilastro

Con riferimento ai punti succitati le verifiche vengono così tabellate:

Tabella relativa alle verifiche di accettazione del modello lineare

Pilas. / Trave	numero dell'elemento considerato
ro I (J) acc.	massimo rapporto domanda/capacità in termini di momento flettente di cui al p.to C8.7.2.2.1 per la verifica di accettazione
ver. f. acc.	massimo rapporto domanda/capacità in termini di taglio di cui al p.to C8.7.2.2.1 per la verifica di accettazione
Rif. cmb	combinazioni per le quali si sono attinti i valori riportati

Tabella relativa alle verifiche degli elementi duttili e fragili

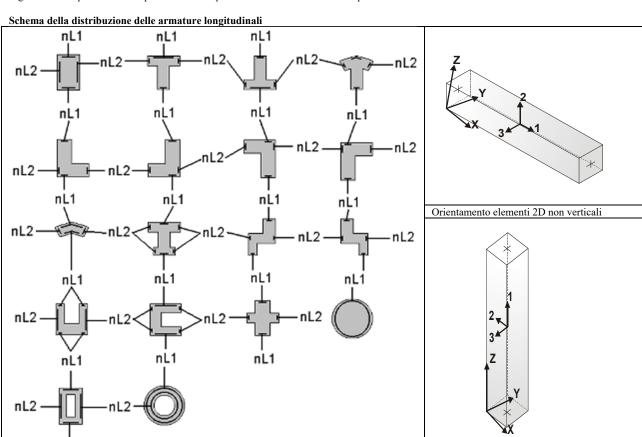
verniche degni elementi duttili e iragin
numero dell'elemento considerato
Stato limite considerato e relativo esito delle verifica (NV non verifica, ok verifica)
massimo rapporto domanda capacità in termini di deformazione per gli elementi duttili; nello specifico:
rot. c / ThetaU per SLC
rot. c / 0.75 ThetaU per SLV
rot. c / ThetaY per SLD
massimo rapporto domanda capacità in termini di verifica a taglio
valore di rotazione rispetto alla corda (rappresenta la domanda in termini di deformazione) per cui si attinge il massimo
valore della verifica ver. (d)
capacità di rotazione rispetto alla corda allo snervamento, calcolata con la formula C8.7.2.7
capacità di rotazione rispetto alla corda in condizioni di collasso
curvatura della sezione allo snervamento dell'acciaio
curvatura ultima della sezione valutata considerando le deformazioni ultime di conglomerato (tenuto conto del
confinamento) e acciaio
luce di taglio; rapporto momento/taglio utilizzato nelle succitate formule per il calcolo di Theta Y (U)
valore del taglio 2 (3) per cui si attinge il massimo valore della verifica ver. (f)
indicatori del rapporto domanda/capacità per gli elementi duttili; se inferiori a 1 le sollecitazioni degli elementi fragili sono
assunte dall'analisi, in caso contrario sono assunte per equilibrio considerando le capacità degli elementi duttili
Combinazioni in cui si attingono i massimi valori dei rapporti domanda/capacità; per i pilastri, il numero tra parentesi
indica l'asse(locale) di riferimento per le rotazioni riportate

Tabella relativa alle verifiche dei nodi trave pilastro

Tabella Telativa alle ve	inicile dei flodi trave pilastro
Pilas. S	numero del pilastro considerato (superiore al nodo)
Pilas. I	numero del relativo pilastro inferiore
Nodo	numero del nodo tra i pilastri
SL cod	Stato limite considerato e relativo esito delle verifica (NV non verifica, ok verifica, nrC non richiesta in quanto confinato)
ver. (+)	massimo rapporto domanda capacità con riferimento alla formula C8.7.2.121(resistenza per trazione)
ver. (-)	massimo rapporto domanda capacità con riferimento alla formula C8.7.2.12 (resistenza per compressione)
V +	valore del taglio, nel pilastro superiore, in direzione 2 o 3 per cui si attinge il massimo valore della verifica ver. (+)
V + af s	sollecitazione di trazione presente nell'armatura longitudinale superiore della trave da sommare (con segno) a V +
N +	azione assiale presente nel pilastro superiore contemporanea a V +
V -	valore del taglio, nel pilastro superiore, in direzione 2 o 3 per cui si attinge il massimo valore della verifica ver. (-)
V - af s	sollecitazione di trazione presente nell'armatura longitudinale superiore della trave da sommare (con segno) a V -
N -	azione assiale presente nel pilastro superiore contemporanea a V -
Area g	area del nodo (da Pilas. I)
Rif. cmb	combinazioni in cui si attingono i massimi valori dei rapporti domanda/capacità; per i nodi, il numero tra parentesi indica l'asse(locale) di riferimento per le sollecitazioni di taglio

VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A. LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.


Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (S.L.) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (T.A.) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

Simbologia adottata nelle tabelle di verifica

nL1

Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ*: valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

Orientamento elementi 2D verticali

Per le verifiche alla G.R. dei pilastri è presente una tabella con i simboli di seguito descritti:

i ei ie verillelle all	a G.K. dei phasti i è pi esente dha tabèna con i simbon di seguito descritti.
Pilas.	numero identificativo dell'elemento D2 pilastro
sovr. Xi (Xf)	Verifica sovraresistenza come da formula 7.4.4 in direzione X, alla base (i) ed alla sommità (f): rapporto tra i momenti
	resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del γ _{Rd} adottato
sovr. Yi (Yf)	Verifica sovraresistenza come da formula 7.4.4 in direzione Y, alla base (i) ed alla sommità (f): rapporto tra i momenti
	resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del $\gamma_{\rm Rd}$ adottato

M 2-2 i (f)	Valore del momento resistente 2-2 alla base (i) ed alla sommità (f) con massimo momento in presenza dello sforzo normale di calcolo
M 3-3 i (f)	Valore del momento resistente 3-3 alla base (i) ed alla sommità (f) con massimo momento in presenza dello sforzo normale di calcolo
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M2-2 (M3-3)	Valore del taglio generato dai momenti resistenti 2-2 (3-3)

Per le verifiche dei dettagli costruttivi per la duttilità è presente una tabella con i simboli di seguito descritti:

(Non presente nel caso	di comporta	mento strutturale	non dissinativo)

Non presente ner case	ou comportamento strutturate non dissipativo)
Pilas	Numero identificativo D2 pilastro
ni	Sforzo assiale adimensionalizzato di progetto relativo alla combinazione sismica SLV
alfaomega	Prodotto tra il coefficiente di efficacia del confinamento e il rapporto meccanico dell'armatura trasversale di confinamento all'interno del nodo
V.7.4.29 2-2 (3-3)	Rapporto tra la domanda di staffe minima nel nodo e il rapporto meccanico dell'armatura trasversale di confinamento inserito all'interno del nodo in direzione 2 (3)
V. 7.4.29 Stato	Codici relativi all'esito della verifica 7.4.29
dmu_fi 2-2 (3-3)	Domanda in duttilità di curvatura in direzione 2 (3)
cmu_fi 2-2 (3-3)	Capacità in duttilità di curvatura in direzione 2 (3)
V. dutt. 2-2 (3-3)	Rapporto tra la domanda in duttilità di curvatura e la capacità in duttilità di curvatura in direzione 2 (3)

Per le verifiche nodi trave-pilastro di elementi nuovi è presente una tabella con i simboli di seguito descritti:

	out trave-phastro di elementi nuovi e presente una tabena con i simbon di seguito descritti:
Nodo	Numero identificativo del nodo trave-pilastro
Stato	Esito delle verifiche
Pilastro	Numero identificativo D2 pilastro
Diam st	Diametro staffe nodo
Passo	Passo staffe nodo
n. br. 2 (3)	Numero braccia staffe per il taglio in direzione 2 (3)
Bj2 (3)	Larghezza effettiva del nodo per il taglio in direzione 2 (3)
Hjc2 (3)	Distanza tra le giaciture più esterne delle armature del pilastro per il taglio in direzione 2 (3)
V. 7.4.8	Rapporto tra il taglio Vjbd e il taglio resistente come da formula 7.4.8
V. Ash	Rapporto tra il passo staffe calcolato secondo il capitolo 7.4.4.3.1. e il passo staffe effattivamente inserita nel nodo. Nel caso
	di valore indica passo staffe utilizzato deriva dalle formule presenti nel paragrafo 7.4.4.3.1. Nel caso di valore minore di 1 il
	passo staffe utilizzato deriva del pilastro superiore o inferiore al nodo
7.4.10	Check passo staffe valutato in funzione della formula 7.4.10:
	SI il passo staffe è calcolato utilizzando la formula 7.4.10;
	NO il passo staffe è calcolato utilizzando le formule 7.4.11 e/o 7.4.12;
	NR calcolo passo staffe non richiesto;
Rif. comb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il nodo

Per le verifiche nodi trave-pilastro di elementi esistenti è presente una tabella con i simboli di seguito descritti:

Pilastro I	Numero identificativo D2 del pilastro inferiore.
Pilastro S	Numero identificativo D2 del pilastro superiore.
Nodo	Numero identificativo del nodo trave-pilastro.
SL cod	Stato limite di riferimento e relativo esito delle verifiche.
ver. (+)	Fattore di sicurezza nei riguardi della verifica di resistenza a compressione (verificato se < 1.00).
V +	Azione di Taglio presente al di sopra del nodo nella verifica di resistenza a compressione.
V + af s	Sollecitazione di trazione presente nell' armatura longitudinale superiore della trave nella verifica di resistenza a
	compressione.
N +	Azione Assiale presente al di sopra del nodo nella verifica di resistenza a compressione.
ver. (-)	Fattore di sicurezza nei riguardi della verifica di resistenza a trazione (verificato se < 1.00).
V -	Azione di Taglio presente al di sopra del nodo nella verifica di resistenza a trazione.
V - af s	Sollecitazione di trazione presente nell' armatura longitudinale superiore della trave nella verifica di resistenza a trazione.
N -	Azione Assiale presente al di sopra del nodo nella verifica di resistenza a trazione.
AreaV2	Area resistente del nodo in direzione 2 ($A_{12}=b_{12}*h_{ic2}$).
AreaV3	Area resistente del nodo in direzione 3 ($A_{i3}=b_{i3}*h_{ic3}$).
Rif. comb.	Combinazione (direzione) di riferimento nella verifica di trazione.

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

M_T Z P P	Numero della travata (T), quota media (Z), nº pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)
Trave	numero identificativo dell'elemento D2
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche effettuate appresso descritte
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Af inf.	Area di armatura longitudinale posta all'intradosso
Af sup	Area di armatura longitudinale posta all'estradosso
Af long.	Area complessiva armatura longitudinale
x/d	rapporto tra posizione dell'asse neutro e altezza utile
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave

Per le verifiche alla G.R. delle travi è presente una tabella con i simboli di seguito descritti:

Trave	numero identificativo dell'elemento D2 trave
M negativo i (f)	Valore del momento resistente negativo all' estremità iniziale i (finale f) della trave

M positivo i (f)	Valore del momento resistente positivo all' estremità iniziale i (finale f) della trave
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M-i M+f	Taglio generato dai momenti resistenti negativo i e positivo f
V M+i M-f	Taglio generato dai momenti resistenti positivo i e negativo f
VEd, min	Valore di taglio minimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
VEd, max	Valore di taglio massimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
Vr1	Valore di taglio come da formula 7.4.1 per armatura diagonale (solo per CD "A")
As	Area singolo ordine armature diagonali come da formula 7.4.2 (solo per CD "A")

Per le verifiche a taglio ciclico di travi e pilastri esistenti è presente una tabella con i simboli di seguito descritti:

Trave/Pilastro	Numero identificativo dell'elemento D2 trave/pilastro
V. SLV	Codice relativo all'esito delle verifiche
Nodo	Numero identificativo del nodo di verifica
Ver. VC	Fattore di sicurezza nei confronti della verifica a taglio ciclico (verificato se < 1.00)
Direz.	Direzione di verifica
N fr	Valore di sforzo normale calcolato con fattore di comportamento fragile
V fr	Valore di taglio calcolato con fattore di comportamento fragile
M fr	Valore di momento calcolato con fattore di comportamento fragile
N dutt	Valore di sforzo normale calcolato con fattore di comportamento duttile
LV	Lunghezza di taglio
Mud,pl	Parte plastica della domanda di duttilità
V cic	Resistenza a taglio in condizioni cicliche (C8.7.2.8)
Cmb	Riferimento combinazioni da cui si generano le verifiche più gravose

Per le verifiche alle T.A. di pilastri e travi è presente una tabella con i simboli di seguito descritti:

er ie veriiiche ali	le T.A. di pilastri e travi è presente una tabella con i simboli di seguito descritti:
$M_P X Y$	Numero della pilastrata (P) e posizione in pianta (X,Y)
M_TZPP	Numero della travata, quota media pilastrata iniziale e finale (nodo in assenza di pilastrata)
Pilas. o Trave	numero identificativo dell'elemento D2
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m); nella terza riga viene riportato il valore delle
	snellezze in direzione 2-2 e 3-3
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali
Quota	Ascissa del punto di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Armat. long.	Numero e diametro dei ferri di armatura longitudinale: ferri di vertice + ferri di lato (come da fig. precedente)
Af inf.	Area di armatura longitudinale posta all'intradosso della trave
Af sup	Area di armatura longitudinale posta all'estradosso della trave
Sc max	Massima tensione di compressione del calcestruzzo
Sc med	Massima tensione media di compressione del calcestruzzo
Sf max	Tensione massima nell'acciaio
staffe	Vengono riportati i dati del tratto di staffatura in cui cade la sezione di verifica; in particolare: numero dei bracci,
	diametro, passo, lunghezza tratto
Tau max	Tensione massima tangenziale nel cls
Rif. comb	Combinazioni in cui si generano i seguenti valori di tensione:
	Sc max, Sc med, Sf max, Tau max
AfV	area dell'armatura atta ad assorbire le azioni di taglio
AfT	area dell'armatura atta ad assorbire le azioni di torsione
Scorr. P	Scorrimento dei piegati
Af long.	Area del ferro longitudinale aggiuntivo per assorbire la torsione

< TABELLA VERIFICHE ELEMENTI - MATERIALI ESISTENTI >

< TABELLA VERIFICHE POST-OPERAM >
Elementi post rinforzo tipo: C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
Elementi post rinforzo tipo: C8A.7.2 INCAMICIATURA IN ACCIAIO e assimilabili
Elementi post rinforzo tipo: C8A.7.1 INCAMICIATURA IN C.A.
Elementi non rinforzati

acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	M_P= 1 r. snell.	X=243.0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
				cm						L=cm			
	94	s=1,m=2	ok,ok	0.0	0.96	0.30	4d16 0+0) d16	0.51	0.22	3+3d6/20) L=150	0.35
	0.45	32,5,32,5	5										
		[b=1.0;1.	0]		150.0	0.96	0.30	4d16 0+0	d16	0.36	0.22	3+3d6/20)
L=150	0.35	0.45	5,5,32,5										
						M P= 2	X=471.0	Y=-20.0					
	Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. lo	ng.	V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb							Ū					
	95	s=1,m=2	ok.ok	0.0	0.96	0.28	4d16 0+0	d16	0.78	0.16	3+3d6/20	L=150	0.35
	0.42	5,11,29,5	,										
		[b=1.0;1.			150.0	0.96	0.28	4d16 0+0) d16	0.53	0.15	3+3d6/20)
L=150	0.35	0.42	5,11,29,5	5	.00.0	0.00	0.20			0.00	00	0 000,20	
00	0.00	· · · <u>-</u>	5, . 1,25,	•		M P= 3	X=699.0	Y=-20.0					

	Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. Io	ng.	V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb	s=1,m=2		0.0	0.96	0.29	4d16 0+0) d16	0.85	0.15	3+3d6/20) L=150	0.36
1 450	0.42	36,29,29 [b=1.0;1.	0]	_	150.0	0.96	0.29	4d16 0+0) d16	0.53	0.15	3+3d6/20)
L=150	0.36 Pilas.	0.42 Note	5,29,29,5 Stato	Quota	%Af		X=927.0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb 87	s=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0) d16	0.66	0.15	3+3d6/20) L=150	0.35
	0.41	29,31,21 [b=1.0;1.			150.0	0.96	0.28	4d16 0+0) d16	0.34	0.15	3+3d6/20)
L=150	0.35	0.41	5,31,21,5	5		M_P= 5	X=1155.	0 Y=-20.0					
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. Io	ng.	V N/M	V N sis	Staffe	V V/T cls	V V/T
	88 0.41	s=1,m=2 29,33,21		0.0	0.96	0.28	4d16 0+0) d16	0.68	0.15	3+3d6/20) L=150	0.34
L=150	0.34	[b=1.0;1. 0.41	0] 5,33,21,5	5	150.0	0.96	0.28	4d16 0+0) d16	0.33	0.15	3+3d6/20)
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	M_P= 6 r. snell.	X=1383.0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
800	91 0.39	s=1,m=2 36,31,5,5		0.0	0.96	0.28	4d16 0+0	d16	1.00	0.15	3+3d6/20) L=150	0.33
L=150	0.33	[b=1.0;1. 0.39			150.0	0.96	0.28	4d16 0+0) d16	0.51	0.15	3+3d6/20)
	Pilas.	Note	Stato	Quota	%Af	M_P= 7 r. snell.	X=1611. (Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb	s=1,m=2		0.0	0.96	0.29	4d16 0+0	d16	0.99	0.18	3+3d6/20) L=150	0.32
	0.38	30,11,5,5 [b=1.0;1.	0]		150.0	0.96	0.29	4d16 0+0) d16	0.49	0.17	3+3d6/20)
L=150	0.32	0.38	5,11,5,5		0/ • 6		X=1839.				o. «		
acc	Pilas. Rif. cmb		Stato	Quota	%Af		Armat. Io	Ü	V N/M	V N sis	Staffe	V V/T cls	
	93 0.38	s=1,m=2 24,5,11,1	11	0.0	0.96	0.29	4d16 0+0		0.99	0.18	3+3d6/20		0.32
L=150	0.32	[b=1.0;1. 0.38	0] _11,5,11,1	11	150.0	0.96	0.29	4d16 0+0) d16	0.49	0.17	3+3d6/20)
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	_	X=2067. 0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
	83 0.39	s=1,m=2 26,21,11		0.0	0.96	0.28	4d16 0+0	d16	1.00	0.15	3+3d6/20) L=150	0.33
L=150	0.33	[b=1.0;1. 0.39		11	150.0	0.96	0.28	4d16 0+0) d16	0.51	0.15	3+3d6/20)
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		X=2295. 0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
400	89 0.41	s=1,m=2 26,27,31		0.0	0.96	0.28	4d16 0+0	d16	0.97	0.15	3+3d6/20) L=150	0.34
L=150	0.34	[b=1.0;1. 0.41		11	150.0	0.96	0.28	4d16 0+0) d16	0.52	0.15	3+3d6/20)
	Pilas.	Note	Stato	Quota	%Af	_	X=2523.0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb	s=1,m=2		0.0	0.96	0.28	4d16 0+0	d16	0.93	0.15	3+3d6/20) L=150	0.35
	0.41	26,21,31 [b=1.0;1.	0]	4.4	150.0	0.96	0.28	4d16 0+0) d16	0.53	0.15	3+3d6/20)
L=150	0.35	0.41	11,21,31				X=2751.						
acc	Pilas. Rif. cmb	Note s=1,m=2 27,23,23	Stato	Quota	%Af		Armat. Io	Ü	V N/M	V N sis	Staffe	V V/T cls	
	81 0.42		,11	0.0	0.96	0.29	4d16 0+0		0.86	0.15	3+3d6/20		0.36
L=150	0.36	[b=1.0;1. 0.42	0] 11,23,23	,11	150.0	0.96	0.29	4d16 0+0) d16	0.53	0.15	3+3d6/20)
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	_	X=2979.0 Armat. lo		V N/M	V N sis	Staffe	V V/T cls	V V/T
	82 0.42	s=1,m=2 11,5,23,1		0.0	0.96	0.28	4d16 0+0) d16	0.78	0.16	3+3d6/20) L=150	0.36
	0.36	[b=1.0;1. 0.42		11	150.0	0.96	0.28	4d16 0+0) d16	0.53	0.15	3+3d6/20)
50	5.50		, ., .	•		M_P= 14	X=3207.	0 Y=-20.0					

acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. Id	ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
	96 0.45	s=1,m=2 10,11,22		0.0	0.96	0.30	4d16 0+	0 d16	0.79	0.22	3+3d6/20) L=150	0.36
L=150	0.36	[b=1.0;1 0.45	.0] 10,11,22	.,11	150.0	0.96	0.30	4d16 0+0) d16	0.57	0.22	3+3d6/20)
						M_P= 15	X=-2.76	e-04	Y=2.54e	-04			
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. lo	ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
L=150	103 0.61	s=97,m= 1.00	=2 33,36,36	ok,ok	0.0	0.57	0.16	4d16 2+0	d16	0.97	80.0	2+2d6/20)
L=150	0.61	[b=1.0;1 1.00			150.0	0.57	0.16	4d16 2+0	d16	0.32	80.0	2+2d6/20)
L-130	0.01	1.00	0,50,50,6	J		M_P= 16	X=3450.	0Y=2.54e	-04				
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. lo	ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
	104	s=97,m=		ok,ok	0.0	0.57	0.16	4d16 2+0	d16	0.97	0.08	2+2d6/20)
L=150	0.61	1.00 [b=1.0;1			150.0	0.57	0.16	4d16 2+0	d16	0.32	0.08	2+2d6/20)
L=150	0.61	1.00	10,26,26	,10		M_P= 17	X=-2.76	e-04	Y=259.0				
	Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. lo	ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb	s=1,m=2		0.0	0.96	0.18	4d16 0+	0 d16	0.52	0.09	3+3d6/20) L=150	0.34
	0.37	36,33,36 [b=1.0;1	.0]		150.0	0.96	0.18	4d16 0+0) d16	0.36	0.09	3+3d6/20)
L=150	0.34	0.37	36,33,36	•				0Y=259.0					
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		Armat. Id	Ü	V N/M	V N sis	Staffe	V V/T cls	
	85 0.37	s=1,m=2 26,27,26	3,21	0.0	0.96	0.18	4d16 0+	0 d16	0.52	0.09	3+3d6/20		0.34
L=150	0.34	[b=1.0;1 0.37	.0] 26,27,26	,21	150.0	0.96	0.18	4d16 0+0) d16	0.36	0.09	3+3d6/20)
						M_P= 19	X=-2.76	e-04	Y=483.0				
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. Id	ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
	86 0.35	s=1,m=2 33,30,36		0.0	0.96	0.14	4d16 0+	0 d16	0.47	0.06	3+3d6/20) L=150	0.30
L=150	0.30	[b=1.0;1 0.35	,	: 31	150.0	0.96	0.14	4d16 0+0) d16	0.30	0.05	3+3d6/20)
	Pilas.	Note	Stato	Quota	%Af		X=3450. Armat. lo	0 Y=483.0 ona.	V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb			0.0	0.96	0.14	4d16 0+	-	0.47	0.06	3+3d6/20		0.29
	0.34	27,24,26 [b=1.0;1	3,21		150.0	0.96	0.14	4d16 0+0		0.30	0.05	3+3d6/20	
L=150	0.29	0.34	21,24,26	,21			X=-2.76		Y=707.0		0.00	0 040/20	
	Pilas.	Note	Stato	Quota	%Af	_	Armat. lo		V N/M	V N sis	Staffe	V V/T cls	: \/ \//T
acc	Rif. cmb			0.0	0.96	0.14	4d16 0+	Ü	0.47	0.06	3+3d6/20		0.30
	0.35	30,33,31	,36	0.0									
L=150	0.30	[b=1.0;1 0.35	.0] 36,33,31	,36	150.0	0.96	0.14	4d16 0+0		0.30	0.05	3+3d6/20	J
	Pilas.	Note	Stato	Quota	%Af	_	Armat. lo	0Y=707.0 ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb	s=1,m=2		0.0	0.96	0.14	4d16 0+	0 d16	0.46	0.06	3+3d6/20) L=150	0.29
	0.35	24,27,21 [b=1.0;1	.0]		150.0	0.96	0.14	4d16 0+0) d16	0.30	0.05	3+3d6/20)
L=150	0.29	0.35	26,27,21	,26		M_P= 23	X=-2.76	e-04	Y=931.0				
	Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. Id	ong.	V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb 102	s=1,m=2		0.0	0.96	0.18	4d16 0+	0 d16	0.52	0.09	3+3d6/20) L=150	0.34
	0.37	31,30,31 [b=1.0;1	.0]		150.0	0.96	0.18	4d16 0+0) d16	0.36	0.09	3+3d6/20)
L=150	0.34	0.37	31,30,31	,36		M_P= 24	X=3450.	0Y=931.0					
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		Armat. Id		V N/M	V N sis	Staffe	V V/T cls	V V/T

	97 0.38	s=1,m=2 21,24,21		0.0	0.96	0.18	4d16 0+6	0 d16	0.52	0.09	3+3d6/2	0 L=150	0.35
L=150	0.35	[b=1.0;1. 0.38		.26	150.0	0.96	0.18	4d16 0+0	d16	0.36	0.09	3+3d6/20	0
			,,	,		M_P= 25	X=-2.76	e-04	Y=1190.	0			
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		Armat. Id	ong.	V N/M	V N sis	Staffe	V V/T cls	s V V/T
L=150	25 0.61	s=97,m= 1.00	2 30,31,31	ok,ok .15	0.0	0.57	0.16	4d16 2+0) d16	0.97	0.08	2+2d6/20	0
L=150	0.61	[b=1.0;1. 1.00			150.0	0.57	0.16	4d16 2+0		0.32	0.08	2+2d6/20	0
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		X=3450. Armat. Ic	0 Y=1190. 0 ong.	0 V N/M	V N sis	Staffe	V V/T cls	s V V/T
L=150	26 0.62	s=97,m= 1.00	2 24,21,21	ok,NV 17	0.0	0.57	0.16	4d16 2+0	d16	0.97	0.08	2+2d6/2	0
L=150	0.62	[b=1.0;1.			150.0	0.57	0.16	4d16 2+0	d16	0.32	0.08	2+2d6/20	0
L=130	Pilas.	Note	Stato	Quota	%Af		X=243.0 Armat. lo	Y=1210. 0	0 V N/M	V N sis	Staffe	V V/T cls	s V V/T
acc	Rif. cmb 27	s=1,m=2	ok,ok	0.0	0.96	0.30	4d16 0+0	0 d16	0.79	0.22	3+3d6/2	0 L=150	0.35
	0.45	15,14,35 [b=1.0;1.			150.0	0.96	0.30	4d16 0+0	0 d16	0.57	0.22	3+3d6/20	0
L=150	0.35	0.45	15,14,35	5,14		M P= 28	X=471.0	Y=1210.0	0				
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. Ic	ong.	V N/M	V N sis	Staffe	V V/T cls	s V V/T
	28 0.42	s=1,m=2 14,20,34		0.0	0.96	0.28	4d16 0+0	0 d16	0.78	0.16	3+3d6/2	0 L=150	0.35
L=150	0.35	[b=1.0;1. 0.42		. 14	150.0	0.96	0.28	4d16 0+0	d16	0.53	0.15	3+3d6/20	0
	Pilas.	Note	Stato	Quota	%Af		X=699.0 Armat. Id	Y=1210. 0	0 V N/M	V N sis	Staffe	V V/T cls	s V V/T
acc	Rif. cmb 29	s=1,m=2		0.0	0.96	0.29	4d16 0+6	0 d16	0.85	0.15	3+3d6/2	0 L=150	0.36
	0.42	31,34,34 [b=1.0;1.	.0]		150.0	0.96	0.29	4d16 0+0) d16	0.53	0.15	3+3d6/20	0
L=150	0.36 Pilas.	0.42 Note	14,34,34 Stato	,14 Quota	%Af		X=927.0 Armat. lo	Y=1210. 0	0 V N/M	V N sis	Staffe	V V/T cls	s V V/T
acc	Rif. cmb	s=1,m=2	ok,ok	0.0	0.96	0.28	4d16 0+0	0 d16	0.92	0.15	3+3d6/2	0 L=150	0.35
	0.42	31,36,26 [b=1.0;1.			150.0	0.96	0.28	4d16 0+0) d16	0.53	0.15	3+3d6/2	0
L=150	0.35	0.42	14,36,26	5,14				0Y=1210.					
acc	Pilas. Rif. cmb		Stato	Quota	%Af		Armat. Ic	•	V N/M	V N sis	Staffe	V V/T cls	
	31 0.41	s=1,m=2 31,30,26		0.0	0.96	0.28	4d16 0+0	0 d16	0.97	0.15	3+3d6/2	0 L=150	0.34
L=150	0.35	[b=1.0;1. 0.41	.0] 14,30,26	5,14	150.0	0.96	0.28	4d16 0+0	0 d16	0.52	0.15	3+3d6/20	0
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		X=1383. Armat. lo	0 Y=1210. 0 ong.	0 V N/M	V N sis	Staffe	V V/T cls	s V V/T
acc	32 0.39	s=1,m=2 31,36,14		0.0	0.96	0.28	4d16 0+6	0 d16	1.00	0.15	3+3d6/2	0 L=150	0.33
1 – 150		[b=1.0;1.	.0]	4.4	150.0	0.96	0.28	4d16 0+0	d16	0.51	0.15	3+3d6/20	0
L=150	0.33		14,36,14		0/ 4.5			0 Y=1210.			o. "		
acc	Pilas. Rif. cmb		Stato	Quota	%Af		Armat. Ic	Ü	V N/M	V N sis	Staffe	V V/T cls	
	33 0.38	s=1,m=2 33,20,14		0.0	0.96	0.29	4d16 0+0	0 d16	0.99	0.18	3+3d6/2	0 L=150	0.32
L=150	0.32	[b=1.0;1. 0.38	.0] 14,20,14	,14	150.0	0.96	0.29			0.50	0.17	3+3d6/20	0
300	Pilas. Rif. cmb	Note	Stato	Quota	%Af		X=1839. Armat. lo	0 Y=1210. 0 ong.	0 V N/M	V N sis	Staffe	V V/T cls	s V V/T
acc	34	s=1,m=2		0.0	0.96	0.29	4d16 0+6	0 d16	0.68	0.18	3+3d6/2	0 L=150	0.32
1 -450	0.38	36,14,20 [b=1.0;1.	.0]	. 20	150.0	0.96	0.29	4d16 0+0	0 d16	0.32	0.17	3+3d6/20	0
L=150	0.32 Dilaa	0.38	20,14,20 State		0/ A£			0Y=1210.		\/ NL -!-	Ct-#-	\/\/ T -'	. \/\ <i>U</i> T
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. Ic	ong.	v N/M	V N sis	Staffe	V V/T cls	s v v/I

	35	s=1,m=2		0.0	0.96	0.28	4d16 0+0	d16	0.69	0.15	3+3d6/20	L=150	0.33
L=150	0.39	25,26,20 [b=1.0;1. 0.39	•	20	150.0	0.96	0.28	4d16 0+0	d16	0.33	0.15	3+3d6/20	
	Pilas. Rif. cmb	Note	Stato	Quota	%Af		X=2295.0 Armat. lor		V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	36 0.41	s=1,m=2 21,24,36		0.0	0.96	0.28	4d16 0+0	d16	0.97	0.15	3+3d6/20	L=150	0.34
L=150	0.34	[b=1.0;1. 0.41		20	150.0	0.96	0.28	4d16 0+0	d16	0.52	0.15	3+3d6/20	
	Pilas.	Note	Stato	Quota	%Af		X=2523.0 Armat. lor		V N/M	V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb	s=1,m=2		0.0	0.96	0.28	4d16 0+0	d16	0.92	0.15	3+3d6/20	L=150	0.35
L=150	0.42 0.35	21,26,36 [b=1.0;1. 0.42		20	150.0	0.96	0.28	4d16 0+0	d16	0.53	0.15	3+3d6/20	
L-130	0.33	0.42	20,20,30	20			X=2751.0						
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af	r. snell.	Armat. lor	ng.	V N/M	V N sis	Staffe	V V/T cls	V V/T
	38 0.42	s=1,m=2 24,28,28	,	0.0	0.96	0.29	4d16 0+0		0.84	0.15	3+3d6/20		0.35
L=150	0.35	[b=1.0;1. 0.42	0] 20,28,28	20	150.0	0.96		4d16 0+0		0.53	0.15	3+3d6/20	
acc	Pilas. Rif. cmb	Note	Stato	Quota	%Af		X=2979.0 Armat. lor		V N/M	V N sis	Staffe	V V/T cls	V V/T
400	39 0.42	s=1,m=2 20,14,25		0.0	0.96	0.28	4d16 0+0	d16	0.78	0.16	3+3d6/20	L=150	0.36
L=150	0.36	[b=1.0;1. 0.42		20	150.0	0.96	0.28	4d16 0+0	d16	0.53	0.15	3+3d6/20	
	Pilas.	Note	Stato	Quota	%Af	_	X=3207.0 Armat. lor			V N sis	Staffe	V V/T cls	V V/T
acc	Rif. cmb 40 0.45	s=1,m=2 25,20,25		0.0	0.96	0.30	4d16 0+0	d16	0.52	0.22	3+3d6/20	L=150	0.36
L=150	0.45	[b=1.0;1. 0.45		20	150.0	0.96	0.30	4d16 0+0	d16	0.36	0.22	3+3d6/20	
00	Pilas.	00	_0,_0,_0		%Af	r. snell.		V N/M	V N sis		V V/T cls	V V/T acc	;
					0.96	0.30		1.00	0.22		0.62	1.00	
_	Pilas.	sovr. Xi	sovr. Xf	sovr. Yi	sovr. Yf	M 2-2 i	M 2-2 f	M 3-3 i	M 3-3 f	Luce per	v	V M2-2	V M3-
3	25	0.0	0.0	0.0	0.0	daN m 3.119e+0		daN m 3.100e+0		cm 1.483e+0	daN 4	daN 1.474e+0	4
	127.70 26	5.374e+0	0.0	2.555e+0 0.0									
	127.70 27	5.376e+0			0.0	3.121e+0	4	3.101e+0	4	1.484e+0	4	1.475e+0	4
	1.131e+(0.0	0.0	2.556e+0 0.0			4 6529.20			1.484e+0			4
	28	0.0		2.556e+0	4	6563.40		6563.40	6529.20	1.484e+0 127.72		4	4
	28 1.043e+0 29	0.0 0.0 0.4 0.0	0.0	2.556e+0 0.0	4 0.0	6563.40 6117.89	6529.20	6563.40 6117.89	6529.20 6083.12	1.484e+0 127.72 129.00	1.131e+0	4	4
	28 1.043e+0 29 1.038e+0 30	0.4 0.0 0.4 0.0 0.4 0.0	0.0	2.556e+0 0.0 0.0	4 0.0 0.0	6563.40 6117.89 6084.47	6529.20 6083.12	6563.40 6117.89 6084.47	6529.20 6083.12 6049.68	1.484e+0 127.72 129.00 129.00	1.131e+0 1.043e+0	4 4 4	4
	28 1.043e+0 29 1.038e+0 30 1.038e+0	0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0	0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0	4 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04	6529.20 6083.12 6049.68	6563.40 6117.89 6084.47 6089.04	6529.20 6083.12 6049.68 6054.23	1.484e+0 127.72 129.00 129.00 129.00	1.131e+0 1.043e+0 1.038e+0	4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(32	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55	6529.20 6083.12 6049.68 6054.23	6563.40 6117.89 6084.47 6089.04 6089.55	6529.20 6083.12 6049.68 6054.23 6054.76	1.484e+0 127.72 129.00 129.00 129.00 129.00	1.131e+0 1.043e+0 1.038e+0 1.038e+0	4 4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(32 1.039e+(33	0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0	0.0 0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04	6529.20 6083.12 6049.68 6054.23 6054.76	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23	1.484e+0 127.72 129.00 129.00 129.00 129.00 129.00	1.131e+0 1.043e+0 1.038e+0 1.038e+0 1.039e+0	4 4 4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(32 1.039e+(0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4	0.0 0.0 0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86	1.484e+0 127.72 129.00 129.00 129.00 129.00 129.00 127.75	1.131e+0 1.043e+0 1.038e+0 1.038e+0 1.039e+0 1.039e+0	4 4 4 4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(32 1.039e+(33 1.077e+(34	0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94	1.484e+0 127.72 129.00 129.00 129.00 129.00 129.00 127.75	1.131e+0 1.043e+0 1.038e+0 1.039e+0 1.039e+0 1.077e+0	4 4 4 4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(33 1.077e+(34 1.504e+(35	0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56 8591.12	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56 8591.12	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94 8560.20	1.484e+0 127.72 129.00 129.00 129.00 129.00 127.75 127.75 129.00	1.131e+0 1.043e+0 1.038e+0 1.039e+0 1.039e+0 1.077e+0 1.504e+0	4 4 4 4 4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(33 1.077e+(34 1.504e+(35 1.465e+(36 1.039e+(37	0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56 8591.12 6089.65	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94 8560.20	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56 8591.12 6089.65	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94 8560.20 6054.84	1.484e+0 127.72 129.00 129.00 129.00 129.00 127.75 127.75 129.00 129.00	1.131e+0 1.043e+0 1.038e+0 1.038e+0 1.039e+0 1.037e+0 1.504e+0 1.465e+0	4 4 4 4 4 4 4	4
	28 1.043e+(29 1.038e+(30 1.038e+(31 1.039e+(33 1.077e+(34 1.504e+(35 1.465e+(36 1.039e+(0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.556e+0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56 8591.12 6089.65 6088.99	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94 8560.20 6054.84	6563.40 6117.89 6084.47 6089.04 6089.55 6093.04 6252.46 8732.56 8591.12 6089.65 6088.99	6529.20 6083.12 6049.68 6054.23 6054.76 6058.23 6217.86 8701.94 8560.20 6054.84 6054.20	1.484e+0 127.72 129.00 129.00 129.00 129.00 127.75 127.75 129.00 129.00 129.00	1.131e+0 1.043e+0 1.038e+0 1.038e+0 1.039e+0 1.077e+0 1.504e+0 1.465e+0 1.039e+0	4 4 4 4 4 4 4 4	4

40 1.551e+(0.0	0.0	0.0	0.0	9006.16	8976.15	9006.16	8976.15	127.72	1.551e+0	04
68 1.376e+0	0.0	0.0	0.0	0.0	7990.56	7958.43	7990.56	7958.43	127.75	1.376e+0	04
81 1.038e+(0.0	0.0	0.0	0.0	6084.56	6049.75	6084.56	6049.75	129.00	1.038e+0	04
82 1.043e+0	0.0	0.0	0.0	0.0	6117.95	6083.19	6117.95	6083.19	129.00	1.043e+0	04
83 1.039e+0	0.0 04	0.0	0.0	0.0	6093.04	6058.23	6093.04	6058.23	129.00	1.039e+0	04
84 1.413e+0	0.0 04	0.0	0.0	0.0	8201.14	8169.43	8201.14	8169.43	127.70	1.413e+(04
85 1.413e+0	0.0 04	0.0	0.0	0.0	8201.71	8169.99	8201.71	8169.99	127.70	1.413e+(04
86 1.376e+0	0.0 04	0.0	0.0	0.0	7990.78	7958.65	7990.78	7958.65	127.75	1.376e+0	04
87 1.465e+0	0.0	0.0	0.0	0.0	8587.55	8556.64	8587.55	8556.64	129.00	1.465e+0	04
88 1.465e+0	0.0 04	0.0	0.0	0.0	8588.03	8557.11	8588.03	8557.11	129.00	1.465e+0	04
89 1.039e+0	0.0 04	0.0	0.0	0.0	6089.54	6054.74	6089.54	6054.74	129.00	1.039e+0	04
90 1.038e+0	0.0	0.0	0.0	0.0	6088.98	6054.16	6088.98	6054.16	129.00	1.038e+0	04
91 1.039e+0	0.0	0.0	0.0	0.0	6093.04	6058.25	6093.04	6058.25	129.00	1.039e+0	04
92 1.077e+0	0.0	0.0	0.0	0.0	6252.46	6217.86	6252.46	6217.86	127.75	1.077e+0	04
93 1.077e+0	0.0	0.0	0.0	0.0	6252.54	6217.92	6252.54	6217.92	127.75	1.077e+0	04
94 1.551e+0	0.0	0.0	0.0	0.0	9006.02	8976.01	9006.02	8976.01	127.72	1.551e+0	04
95 1.043e+0	0.0	0.0	0.0	0.0	6117.87	6083.10	6117.87	6083.10	129.00	1.043e+0	04
96 1.131e+0	0.0	0.0	0.0	0.0	6563.25	6529.08	6563.25	6529.08	127.72	1.131e+0	04
97 1.413e+0	0.0	0.0	0.0	0.0	8203.65	8171.95	8203.65	8171.95	127.70	1.413e+0	04
98	0.0	0.0	0.0	0.0	6084.46	6049.66	6084.46	6049.66	129.00	1.038e+0	04
1.038e+0	0.0	0.0	0.0	0.0	7990.83	7958.70	7990.83	7958.70	127.75	1.376e+0	04
1.376e+0	0.0	0.0	0.0	0.0	7990.73	7958.61	7990.73	7958.61	127.75	1.376e+0	04
1.376e+0	0.0	0.0	0.0	0.0	8201.05	8169.33	8201.05	8169.33	127.70	1.413e+0	04
1.413e+0 103	0.0	0.0	0.0	0.0	3.119e+0)4	3.099e+0)4	1.483e+	04	1.474e+04
127.70	5.373e+0		2.555e+0								
104 127.70	0.0 5.374e+(0.0 04	0.0 2.555e+(0.0 04	3.120e+0)4	3.100e+0)4	1.483e+	04	1.474e+04
	2.2. 10.1										
Pilas.					M 2-2 i 3.121e+0	M 2-2 f)4	M 3-3 i 3.101e+0		1.484e+	V M2-2 04	V M3-3 1.475e+04
	5.376e+0	04	2.556e+0	04						- •	

< TABELLA VERIFICHE POST-OPERAM >

Elementi post rinforzo tipo: C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI Elementi post rinforzo tipo: C8A.7.2 INCAMICIATURA IN ACCIAIO e assimilabili Elementi post rinforzo tipo: C8A.7.1 INCAMICIATURA IN C.A. Elementi non rinforzati

Pilas.I AreaV2	Pilas.S AreaV3	Nodo Rif. cmb	SL cod	ver. (+)	V +	V + af s	N +	ver. (-)	V -	V - af s	N -	
					daN	daN	daN		daN	daN	daN	cm2
cm2												
25		36	SLV:NV	1.10	0.0	1.815e+0	4	0.0	0.19	0.0	1.815e+0	4
0.0	1624.0	3792.0	15(2),15(2)								
26		37	SLV:NV	Í.10	0.0	-1.815e+0)4	0.0	0.19	0.0	-1.815e+0)4
0.0	1624.0	3792.0	17(2),17(2)								
27		38	SLV:ok	0.94	0.0	-9267.07	0.0	0.17	0.0	-9267.07	0.0	965.7
643.8	14(2),14(2)										
28	· /· · ·	3 9	SLV:ok	0.87	0.0	-8561.38	0.0	0.15	0.0	-8561.38	0.0	965.7
643.8	14(2),14(2)										
29	. ,	4 0	SLV:ok	0.88	0.0	-8620.24	0.0	0.15	0.0	-8620.24	0.0	965.7
643.8	14(2),14(2)										
30	. ,	4 1	SLV:ok	0.87	0.0	-8551.81	0.0	0.15	0.0	-8551.81	0.0	965.7
643.8	14(2),14(2)										

31	42	SLV:ok	0.86	0.0	-8432.60 0.0	0.15	0.0	-8432.60	0.0	965.7
643.8 32	14(2),14(2) 43	SLV:ok	0.84	0.0	-8271.84 0.0	0.15	0.0	-8271.84	0.0	965.7
643.8 33	14(2),14(2) 19	SLV:ok	0.82	0.0	-8017.71 0.0	0.14	0.0	-8017.71	0.0	965.7
643.8 34	14(2),14(2) 20	SLV:ok	0.81	0.0	8009.32 0.0	0.14	0.0	8009.32	0.0	965.7
643.8 35	20(2),20(2) 21	SLV:ok	0.84	0.0	8264.85 0.0	0.15	0.0	8264.85	0.0	965.7
643.8 36	20(2),20(2) 22	SLV:ok	0.86	0.0	8426.75 0.0	0.15	0.0	8426.75	0.0	965.7
643.8 37	20(2),20(2)	SLV:ok	0.87	0.0	8546.87 0.0	0.15	0.0	8546.87	0.0	965.7
643.8 38	20(2),20(2)	SLV:ok	0.88	0.0	8616.14 0.0	0.15	0.0	8616.14		965.7
643.8 39	20(2),20(2)	SLV:ok	0.87	0.0	8560.64 0.0	0.15	0.0	8560.64		965.7
643.8 40	20(2),20(2) 44	SLV:ok	0.94	0.0	9266.93 0.0	0.17	0.0	9266.93		965.7
643.8 68	20(2),20(2)	SLV:ok	0.69	0.0	6824.82 0.0	0.17	0.0	6824.82		643.8
965.7	26(3),26(3)									
81 643.8	9 11(2),11(2)	SLV:ok	0.88	0.0	8615.85 0.0	0.15	0.0	8615.85		965.7
82 643.8	10 11(2),11(2)	SLV:ok	0.87	0.0	8558.91 0.0	0.15	0.0		0.0	965.7
83 643.8	6 11(2),11(2)	SLV:ok	0.84	0.0	8264.60 0.0	0.15	0.0	8264.60		965.7
84 965.7	14 33(3),33(3)	SLV:ok	0.79	0.0	-7761.34 0.0	0.14	0.0	-7761.34		643.8
85 965.7	15 27(3),27(3)	SLV:ok	0.79	0.0	-7762.51 0.0	0.14	0.0	-7762.51	0.0	643.8
86 965.7	30 36(3),36(3)	SLV:ok	0.69	0.0	6830.86 0.0	0.12	0.0	6830.86	0.0	643.8
87 643.8	26 5(2),5(2)	SLV:ok	0.87	0.0	-8547.65 0.0	0.15	0.0	-8547.65	0.0	965.7
88 643.8	2 5(2),5(2)	SLV:ok	0.86	0.0	-8427.89 0.0	0.15	0.0	-8427.89	0.0	965.7
89 643.8	7 11(2),11(2)	SLV:ok	0.86	0.0	8426.54 0.0	0.15	0.0	8426.54	0.0	965.7
90 643.8	8 11(2),11(2)	SLV:ok	0.87	0.0	8546.71 0.0	0.15	0.0	8546.71	0.0	965.7
91 643.8	3 5(2),5(2)	SLV:ok	0.84	0.0	-8266.59 0.0	0.15	0.0	-8266.59	0.0	965.7
92 643.8	4 5(2),5(2)	SLV:ok	0.81	0.0	-8012.04 0.0	0.14	0.0	-8012.04	0.0	965.7
93 643.8	5 11(2),11(2)	SLV:ok	0.81	0.0	8009.07 0.0	0.14	0.0	8009.07	0.0	965.7
94 643.8	45	SLV:ok	0.94	0.0	-9263.78 0.0	0.17	0.0	-9263.78	0.0	965.7
95 643.8	5(2),5(2) 46	SLV:ok	0.87	0.0	-8558.15 0.0	0.15	0.0	-8558.15	0.0	965.7
96	5(2),5(2) 11	SLV:ok	0.94	0.0	9264.59 0.0	0.17	0.0	9264.59	0.0	965.7
643.8 97	11(2),11(2) 35	SLV:ok	0.79	0.0	7768.20 0.0	0.14	0.0	7768.20	0.0	643.8
965.7 98	24(3),24(3) 24	SLV:ok	0.88	0.0	-8616.56 0.0	0.15	0.0	-8616.56	0.0	965.7
643.8 100	5(2),5(2) 32	SLV:ok	0.69	0.0	6830.50 0.0	0.12	0.0	6830.50	0.0	643.8
965.7 101	36(3),36(3) 33	SLV:ok	0.69	0.0	-6810.78 0.0	0.12	0.0	-6810.78	0.0	643.8
965.7 102	21(3),21(3) 34	SLV:ok	0.79	0.0	7759.46 0.0	0.14	0.0	7759.46	0.0	643.8
965.7 103	30(3),30(3) 12	SLV:NV	1.10	0.0	1.814e+04	0.0	0.19	0.0	1.814e+0)4
0.0 104	1624.0 3792.0 13	8(2),8(2) SLV:NV	1.10	0.0	-1.815e+04	0.0	0.19	0.0	-1.815e+	04
0.0	1624.0 3792.0	10(2),10(
Pilas.l			ver. (+)			ver. (-)				
			0.69			0.12				

 0.69
 0.12

 1.10
 0.19

< TABELLA VERIFICHE POST-OPERAM >

Elementi post rinforzo tipo: C8A.7.3 PLACCATURA E FASCIATURA IN MATERIALI COMPOSITI
Elementi post rinforzo tipo: C8A.7.2 INCAMICIATURA IN ACCIAIO e assimilabili
Elementi post rinforzo tipo: C8A.7.1 INCAMICIATURA IN C.A.
Elementi non rinforzati

								M_T= 25	Z=150.0	P=1	P=16		
cmb	Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif.
CITID			cm									L=cm	
	54 5,24,32	NV,NV	0.0	0.26	3.4	6.5	0.0	0.09	1.03	0.35	0.99	2d12/25	L=42
	9,24,29	s=3,m=2	121.9	0.26	3.4	6.5	0.0	0.08	0.76	0.23	0.57	2d6/25 L	=124
	10,28,29		243.8	0.26	3.4	6.5	0.0	0.09	0.58	0.29	1.08	2d12/25	L=44
	41 36,36,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.47	0.32	0.31	2d12/25	L=45
	30,36,12	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.46	0.20	0.04	2d6/25 L	=108
	10,29,2		228.0	0.26	3.4	6.5	0.0	0.09	0.46	0.29	0.31	2d12/25	L=45
	42 32,32,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.53	0.28	0.31	2d12/25	L=46
	30,32,5	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.67	0.17	0.06	2d6/25 L	=108
	10,21,2		228.0	0.26	3.4	6.5	0.0	0.09	0.49	0.27	0.31	2d12/25	L=46
	43	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.63	0.25	0.31	2d12/25	L=46
	32,24,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.85	0.14	0.05	2d6/25 L	=108
	30,24,5		228.0	0.26	3.4	6.5	0.0	0.09	0.56	0.25	0.31	2d12/25	L=46
	30,21,2 44	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.69	0.23	0.31	2d12/25	L=45
	32,24,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.96	0.12	0.05	2d6/25 L	=108
	30,24,5		228.0	0.26	3.4	6.5	0.0	0.09	0.63	0.23	0.31	2d12/25	L=45
	30,21,2 45	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.72	0.21	0.31	2d12/25	L=45
	32,24,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.03	0.09	0.05	2d6/25 L	=108
	30,24,5		228.0	0.26	3.4	6.5	0.0	0.09	0.69	0.20	0.31	2d12/25	L=45
	30,21,2 46	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.73	0.18	0.31	2d12/25	L=45
	32,2,2 36,24,8	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.06	0.06	0.05	2d6/25 L	=108
			228.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25	L=45
	30,2,2 47 24,2,2	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25	L=46
	36,8,5	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.05	0.04	0.05	2d6/25 L	=108
	30,2,2		228.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25	L=46
	48	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25	L=45
	24,2,2 26,30,10	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.06	0.06	0.05	2d6/25 L	=108
	22,2,2		228.0	0.26	3.4	6.5	0.0	0.09	0.73	0.18	0.31	2d12/25	L=45
	49	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.69	0.20	0.31	2d12/25	L=45
	24,31,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.03	0.09	0.05	2d6/25 L	=108
	24,30,11		228.0	0.26	3.4	6.5	0.0	0.09	0.72	0.21	0.31	2d12/25	L=45
	22,30,2 50	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.63	0.23	0.31	2d12/25	L=46
	24,31,2 24,30,11	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.96	0.12	0.05	2d6/25 L	=108

	22,30,2		228.0	0.26	3.4	6.5	0.0	0.09	0.69	0.23	0.31	2d12/25 L	
	51 24,31,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.56	0.25	0.31	2d12/25 L	.=46
	24,30,11	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.84	0.14	0.05	2d6/25 L=	:108
	22,30,2		228.0	0.26	3.4	6.5	0.0	0.09	0.63	0.25	0.31	2d12/25 L	.=46
	52 8,23,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.49	0.27	0.31	2d12/25 L	_=46
	24,22,11	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.70	0.17	0.06	2d6/25 L=	:108
	22,22,2		228.0	0.26	3.4	6.5	0.0	0.09	0.54	0.28	0.31	2d12/25 L	.=46
	53 8,23,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.46	0.30	0.31	2d12/25 L	_=46
	24,26,6	s=3,m=2	114.0	0.26	3.4	6.5	0.0	80.0	0.48	0.20	0.04	2d6/25 L=	:108
	26,26,2		228.0	0.26	3.4	6.5	0.0	0.09	0.47	0.32	0.31	2d12/25 L	_=46
	55 8,34,23	NV,NV	0.0	0.26	3.4	6.5	0.0	0.09	0.58	0.29	1.09	2d12/25 L	_=44
	7,30,23	s=3,m=2	121.9	0.26	3.4	6.5	0.0	0.08	0.76	0.23	0.58	2d6/25 L=	-124
	11,30,23		243.8	0.26	3.4	6.5	0.0	0.09	1.03	0.35	0.99	2d12/25 L	_=42
	11,30,22							M_T= 26	Z=150.0	P=15	P=25		
	Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif.
cmb	56	NV,ok	0.0	0.26	3.4	6.5	0.0	0.34	0.72	0.19	0.01	2d12/25 L	_=25
	36,20,36	s=3,m=2	129.5	0.26	3.4	6.5	0.0	0.10	0.71	0.18	9.98e-03	2d6/25 L=	-139
	31,11,33		259.0	0.26	3.4	6.5	0.0	0.34	0.44	0.20	0.01	2d12/25 L	_=45
	31,11,33 58	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.17	0.09	0.06	2d12/25 L	_=45
	31,15,36	s=3,m=2	112.0	0.26	3.4	6.5	0.0	0.08	0.13	80.0	0.03	2d6/25 L=	=104
	31,35,36		224.0	0.26	3.4	6.5	0.0	0.09	0.26	0.10	0.05	2d12/25 L	_=45
	31,35,33 60	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.21	0.10	0.08	2d12/25 L	_=45
	31,34,36	s=3,m=2	112.0	0.26	3.4	6.5	0.0	0.08	0.05	80.0	0.05	2d6/25 L=	=104
	15,29,36		224.0	0.26	3.4	6.5	0.0	0.09	0.21	0.10	0.08	2d12/25 L	_=45
	36,29,31 62	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.26	0.10	0.05	2d12/25 L	_=45
	36,32,36	s=3,m=2	112.0	0.26	3.4	6.5	0.0	0.08	0.13	80.0	0.03	2d6/25 L=	=104
	36,32,31		224.0	0.26	3.4	6.5	0.0	0.09	0.17	0.09	0.06	2d12/25 L	_=45
	36,8,31 64	NV,ok	0.0	0.26	3.4	6.5	0.0	0.34	0.44	0.20	0.01	2d12/25 L	_=45
	36,20,30	s=3,m=2	129.5	0.26	3.4	6.5	0.0	0.10	0.71	0.18	9.97e-03	2d6/25 L=	-139
	36,20,30		259.0	0.26	3.4	6.5	0.0	0.34	0.72	0.19	0.01	2d12/25 L	.=25
	31,11,31							M_T= 27	Z=150.0	P=16	P=26		
	Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif.
cmb	57	NV,ok	0.0	0.26	3.4	6.5	0.0	0.34	0.72	0.19	0.01	2d12/25 L	.=25
	26,14,26	s=3,m=2	129.5	0.26	3.4	6.5	0.0	0.10	0.71	0.18	9.99e-03	2d6/25 L=	=139
	21,5,27		259.0	0.26	3.4	6.5	0.0	0.34	0.44	0.20	0.01	2d12/25 L	_=45
	21,5,27 59	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.16	0.09	0.06	2d12/25 L	_=45
	21,17,26	s=3,m=2	112.0	0.26	3.4	6.5	0.0	0.08	0.13	0.08	0.03	2d6/25 L=	=104
	21,33,26		224.0	0.26	3.4	6.5	0.0	0.09	0.25	0.09	0.05	2d12/25 L	_=45
	21,33,27 61	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.20	0.09	0.08	2d12/25 L	_=45
	21,28,26												

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

	6,28,26	s=3,m=2		0.26	3.4	6.5	0.0	0.08	0.05	0.07	0.05	2d6/25 L=104
	26,23,21	.11.	224.0	0.26	3.4	6.5	0.0	0.09	0.23	0.09	0.08	2d12/25 L=45
	63 26,22,24	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.24	0.10	0.05	2d12/25 L=45
	26,22,21	s=3,m=2		0.26	3.4	6.5	0.0	0.08	0.12	0.08	0.03	2d6/25 L=104
	26,10,21	N D / 1	224.0	0.26	3.4	6.5	0.0	0.09	0.14	0.09	0.06	2d12/25 L=45
	65 26,14,24	NV,ok	0.0	0.26	3.4	6.5	0.0	0.34	0.43	0.21	0.01	2d12/25 L=45
	26,14,24	s=3,m=2		0.26	3.4	6.5	0.0	0.10	0.68	0.19	0.01	2d6/25 L=139
	21,5,21		259.0	0.26	3.4	6.5	0.0	0.34	0.74	0.19	0.01	2d12/25 L=25
								M_1= 28	Z=150.0		P=40	
cmb	Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe Rif.
	66 14,27,35	NV,NV	0.0	0.26	3.4	6.5	0.0	0.09	1.03	0.35	0.99	2d12/25 L=42
	18,27,34	s=3,m=2	121.9	0.26	3.4	6.5	0.0	0.08	0.76	0.23	0.57	2d6/25 L=124
	17,23,34		243.8	0.26	3.4	6.5	0.0	0.09	0.58	0.29	1.08	2d12/25 L=44
	99 31,31,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.47	0.32	0.31	2d12/25 L=46
	33,31,19	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.46	0.20	0.04	2d6/25 L=108
	17,34,2		228.0	0.26	3.4	6.5	0.0	0.09	0.46	0.29	0.31	2d12/25 L=46
	69 35,35,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.53	0.28	0.31	2d12/25 L=46
	33,35,14	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.67	0.17	0.06	2d6/25 L=108
	17,26,2		228.0	0.26	3.4	6.5	0.0	0.09	0.49	0.27	0.31	2d12/25 L=46
	70 35,27,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.63	0.25	0.31	2d12/25 L=46
	33,27,14	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.85	0.14	0.05	2d6/25 L=108
	33,26,2		228.0	0.26	3.4	6.5	0.0	0.09	0.56	0.25	0.31	2d12/25 L=46
	71 35,27,2	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.69	0.23	0.31	2d12/25 L=46
	33,27,14	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.96	0.12	0.05	2d6/25 L=108
	33.26.2		228.0	0.26	3.4	6.5	0.0	0.09	0.63	0.23	0.31	2d12/25 L=46
	72 35,27,2	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.72	0.21	0.31	2d12/25 L=46
		s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.03	0.09	0.05	2d6/25 L=108
	33,27,14 33,26,2		228.0	0.26	3.4	6.5	0.0	0.09	0.69	0.20	0.31	2d12/25 L=46
	73	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.73	0.18	0.31	2d12/25 L=46
	35,2,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.06	0.06	0.05	2d6/25 L=108
	31,27,15		228.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25 L=46
	33,2,2 74	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25 L=46
	27,2,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.05	0.04	0.05	2d6/25 L=108
	31,15,14		228.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25 L=46
	33,2,2 75	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.72	0.18	0.31	2d12/25 L=46
	27,2,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.06	0.06	0.05	2d6/25 L=108
	21,33,17		228.0	0.26	3.4	6.5	0.0	0.09	0.73	0.18	0.31	2d12/25 L=46
	25,2,2 76	NV,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.69	0.20	0.31	2d12/25 L=46
	27,36,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	1.03	0.09	0.05	2d6/25 L=108
	27,33,20											

Prog. e D.L. Strutturale: Ing. Enrico Tasselli

7.38.12 14.0 0.28 3.4 6.5 0.0 0.08 0.96 0.12 0.05 266/25 L=108 17.33.20 0.68 0.28 0.26 3.4 6.5 0.0 0.09 0.69 0.23 0.31 2412/25 L=46 0.33.20 0.68 0.25 0.31 2412/25 L=46 0.33.20 0.68 0.25 0.31 2412/25 L=46 0.37.36.20 0.68 0.68 0.25 0.31 2412/25 L=46 0.37.36.20 0.68 0.25 0.25 0.31 2412/25 L=46 0.25 0.31 2412/25 L=46 0.25 0.31 2412/25 L=46 0.25 0.31 2412/25 L=46 0.25 0.25 0.25 0.25 0.31 2412/25 L=46 0.25 0.25 0.25 0.25 0.31 2412/25 L=46 0.25 0.25 0.25 0.25 0.25 0.31 2412/25 L=46 0.25 0.													
7.7 o, 0, o,	05 00 0		228.0	0.26	3.4	6.5	0.0	0.09	0.72	0.21	0.31	2d12/25 l	L=46
1-	77	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.64	0.23	0.31	2d12/25 l	L=46
7.33.20	27,36,2	s=3,m=2	114.0	0.26	3.4	6.5	0.0	0.08	0.96	0.12	0.05	2d6/25 L=	=108
15.33.2	27,33,20			0.26	3.4		0.0	0.09		0.23			
7.36.2	25,33,2	ok ok											
7.33.20 5.33.2 5.38.2 5.39.2 5.30.2		,											
5.33 2	7,33,20	s=3,m=2											
5.36.2 Sa3.m=2 114.0 0.26 3.4 6.5 0.0 0.08 0.72 0.16 0.06 2d6/25 L=108 7.33.20 228.0 0.26 3.4 6.5 0.0 0.09 0.55 0.27 0.31 2d12/25 L=46 0.55.82.82 Sa3.m=2 114.0 0.26 3.4 6.5 0.0 0.09 0.47 0.29 0.31 2d12/25 L=46 0.55.82.82 Sa3.m=2 114.0 0.26 3.4 6.5 0.0 0.09 0.47 0.29 0.31 2d12/25 L=46 0.26 2.28.0 0.26 3.4 6.5 0.0 0.09 0.48 0.31 0.31 0.31 2d12/25 L=46 0.27 0.34 0.20 0.04 2d6/25 L=108 7.27 7.27 2.38 0.26 3.4 6.5 0.0 0.09 0.48 0.31 0.31 0.31 2d12/25 L=46 0.33.28 Sa3.m=2 121.9 0.26 3.4 6.5 4.5 0.09 0.58 0.29 1.09 2d12/25 L=44 0.33.25 2d6/25 L=124 0.33.25 2d3.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33.25 2d6/25 L=124 0.33.25 2d3.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33.25 2d6/25 L=124 0.33.25 2d6/25													
7.33,20		ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.50	0.26	0.31	2d12/25 l	L=46
1,332	27,33,20		114.0	0.26	3.4	6.5	0.0	0.08	0.72	0.16	0.06	2d6/25 L=	=108
0			228.0	0.26	3.4	6.5	0.0	0.09	0.55	0.27	0.31	2d12/25 l	L=46
**s=3,m=2 114.0	0	ok,ok	0.0	0.26	3.4	6.5	0.0	0.09	0.47	0.29	0.31	2d12/25 l	L=46
228.0 0.26 3.4 6.5 0.0 0.99 0.48 0.31 0.31 2d12/25 L=46 1.21/2 7 NV, NV 0.0 0.26 3.4 6.5 4.5 0.09 0.58 0.29 1.09 2d12/25 L=44 5.2 9.28 s=3,m=2 121.9 0.26 3.4 6.5 4.5 0.08 0.75 0.23 0.58 2d6/25 L=124 6.33,28 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 **RAF** Af inf.* Af. sup Af long. x/d V N/M V V/T cls V V/T acc		s=3,m=2	114.0	0.26	3.4	6.5	0.0	80.0	0.49	0.20	0.04	2d6/25 L=	=108
7 NV.NV 0.0 0.26 3.4 6.5 4.5 0.09 0.58 0.29 1.09 2d12/25 L=44 5.5 29.28 s=3,m=2 121.9 0.26 3.4 6.5 4.5 0.08 0.75 0.23 0.58 2d6/25 L=124 6.33,28 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.34 1.06 0.35 1.09 2d12/25 L=42			228.0	0.26	3.4	6.5	0.0	0.09	0.48	0.31	0.31	2d12/25 l	L=46
s=3,m=2 121.9 0 .26 3.4 6.5 4.5 0.08 0.75 0.23 0.58 2d6/25 L=124 6.33,28 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33,25 243.8 0.26 3.39 6.47 4.52 0.34 1.06 0.35 1.09 2412/25 L=42 0.34	7	NV,NV	0.0	0.26	3.4	6.5	4.5	0.09	0.58	0.29	1.09	2d12/25 l	L=44
243.8 0.26 3.4 6.5 4.5 0.09 1.02 0.35 1.00 2d12/25 L=42 0.33.25 **Trave	, ,	s=3,m=2	121.9	0.26	3.4	6.5	4.5	0.08	0.75	0.23	0.58	2d6/25 L=	=124
Mark Mart Mark Mart Mark	6,33,28		243.8	0.26	3.4	6.5	4.5	0.09	1.02	0.35	1.00	2d12/25 l	L=42
rave M negativo i Ed,min VEd,max V71 daN m),33,25												
rave M negativo i VEd,max Vr1 As daN m daN	rave			%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T ac	С	
				0.26	3.39	6.47	4.52	0.34	1.06	0.35	1.09		
	_		_				_		_				
11 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				•	/o i	M negati	vo f	M positiv	vo f	Luce per	٠٧	V M-i M+	·fV M+i
2 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_ ~,	v ⊑u,max	Vr1	As				•		•			
1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	•	daN m	daN m	daN m				daN	daN				0.0
0	1 0	daN m 1.239e+0	daN m 4	daN m 6926.86	1.239e+0	14	6926.86	daN 199.00	daN 6902.89	6902.89	0.0	0.0	
1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 .0 2 .0	daN m 1.239e+0 1.239e+0	daN m 4 4	daN m 6926.86 6926.86	1.239e+0 1.239e+0	14	6926.86 6926.86	daN 199.00 199.00	daN 6902.89 6902.89	6902.89 6902.89	0.0	0.0	0.0
.0	1 .0 2 .0 3	daN m 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4	daN m 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0	14 14 14	6926.86 6926.86 6926.86	daN 199.00 199.00	daN 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89	0.0 0.0 0.0	0.0 0.0 0.0	0.0
.0	1 .0 2 .0 3 .0 4	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14	6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0
8 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 9 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 2 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 3 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6530.09 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 0.0 1 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 .0 2 .0 3 .0 4 .0 5	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	4 4 4 4	6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
0 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 .0 2 .0 3 .0 4 .0 5 .0 6	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
0.0	11 0.0 22 0.0 33 0.0 4 0.0 5 5 0.0 6 6 0.0 7	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	11 10.0 12 12 13 13 13 10.0 14 14 10.0 15 10.0 16 16 17 10.0 18	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	11 10.0 12 10.0 13 13 10.0 14 14 10.0 15 10.0 16 16 10.0 17 10.0 18 10.0 18 10.0 19 10.0 10	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	11 10.0 12 13 13 13 13 13 13 14 14 1.0 15 15 10.0 16 16 17 10.0 18 18 19 10.0 10 10 10 10 10 10 10 10 10 1	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33 1.239e+04 6926.86 1.239e+04 6926.86 199.00 6902.89 6902.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	11 10.0 12 13 10.0 13 10.0 14 10.0 15 10.0 16 10.0 18 10.0 18 10.0	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	14 14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11 0.0 22 0.0 1.3 0.0 1.4 0.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0	14 14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
55 1.239e+04 6926.86 1.239e+04 6926.86 210.36 6530.09 6530.09 0.0 0.0 0.0 66 1.239e+04 4.278e+04 1.239e+04 4.278e+04 209.50 2.634e+04 6.634e+04 0.0 0.0 0.0 0.0 67 1.239e+04 4.278e+04 1.239e+04 4.278e+04 209.50 2.634e+04 6.634e+04 0.0 0.0 0.0 0.0 68 1.239e+04 6926.86 1.239e+04 6926.86 195.00 7044.49 7044.49 0.0 0.0 0.0	11 0.0 12 0.0 13 10.0 14 10.0	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0	14 14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
66 1.239e+04 4.278e+04 1.239e+04 4.278e+04 209.50 2.634e+04 1.634e+04 0.0 0.0 0.0 0.0 1.7 1.239e+04 4.278e+04 209.50 2.634e+04 1.634e+04 0.0 0.0 0.0 1.239e+04 6926.86 1.239e+04 6926.86 195.00 7044.49 7044.49 0.0 0.0	1 1.0 2 1.0 2 1.0 3 1.0 4 1.0 5 1.0 6 1.0 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	daN m 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0	14 14 14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 1.239e+04 4.278e+04 1.239e+04 4.278e+04 209.50 2.634e+04 .634e+04 0.0 0.0 0.0 0.0 0.0 8 1.239e+04 6926.86 1.239e+04 6926.86 1.239e+04 7044.49 7044.49 7044.49 0.0 0.0 0.0	1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0 8 .0 9 .0 0 .0 1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 5	daN m 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0	14 14 14 14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
58 1.239e+04 6926.86 1.239e+04 6926.86 195.00 7044.49 7044.49 0.0 0.0 0.0	141 15.00 142 143 15.00 144 15.00 145 160 170 170 180 190 190 190 190 190 190 190 19	daN m 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0	14 14 14 14 14 14 14 14 14 14 14 14 14	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 210.36 210.36	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	41 0.0 42 0.0 43 0.0 44 0.0 45 0.0 46 0.0 47 0.0 48 0.0 49 0.0 49 0.0 50 0.0 51 0.0 52 0.0 53 0.0 55 0.0 55 0.0 55 56 66 66 66 67 67 67 67 67 67 6	daN m 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0.0	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	1.239e+0	14 14 14 14 14 14 14 14 14 14 14 11 1.239e+0	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 210.36 210.36 4.278e+0	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6530.09 6530.09	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	41 0.0 42 0.0 43 0.0 44 0.0 45 0.0 46 0.0 47 0.0 48 0.0 49 0.0 50 0.0 51 0.0 52 0.0 53 0.0 54 0.0 55 0.0 55 55 55 55 56 57	daN m 1.239e+0	daN m 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6	daN m 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 4.278e+0 0.0 4.278e+0	1.239e+0	14 14 14 14 14 14 14 14 14 14 14 14 14 1	6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86 6926.86	daN 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 199.00 210.36 210.36 4.278e+0	daN 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6530.09	6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 6902.89 209.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M-f

	.239e+04	6926.86	1.239e+0)4	6926.86	195.00	7044.49	7044.49	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	195.00	7044.49	7044.49	0.0	0.0	0.0
0.0 61 1 0.0	.239e+04	6926.86	1.239e+0)4	6926.86	195.00	7044.49	7044.49	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	195.00	7044.49	7044.49	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	195.00	7044.49	7044.49	0.0	0.0	0.0
	.239e+04	4.278e+0	4	1.239e+0	04	4.278e+0)4	209.50	2.634e+0)4	
2.634e+04	0.0	0.0	0.0	0.0							
	.239e+04	4.278e+0		1.239e+0)4	4.278e+0)4	209.50	2.634e+0)4	
2.634e+04	0.0	0.0	0.0	0.0							
66 1 0.0	.239e+04	6926.86	1.239e+0)4	6926.86	210.36	6530.09	6530.09	0.0	0.0	0.0
67 1 0.0	.239e+04	6926.86	1.239e+0)4	6926.86	210.36	6530.09	6530.09	0.0	0.0	0.0
69 1 0.0	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
70 1 0.0	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
71 1 0.0	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0	e+04 6926.86		199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0)4	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	.239e+04	6926.86	1.239e+0	04	6926.86	199.00	6902.89	6902.89	0.0	0.0	0.0
	/I negativo i /Ed,max Vr1	M positiv	/o i	M negati	ivo f	M positi			V M-i M+	·fV M+i M	-f
1 2.634e+04	.239e+04	4.278e+0 0.0	4 0.0	1.239e+0 0.0	04	4.278e+0	0.0)4		2.634e+0)4	

3. RELAZIONE SUI MATERIALI

Il calcestruzzo impiegato è *C25/30* con le seguenti caratteristiche:

- resistenza caratteristica cilindrica $f_{ck} = 25MPa$;
- resistenza caratteristica cubica $R_{ck} = 30MPa$;
- modulo di elasticità normale E = 30000MPa;
- peso specifico medio $\gamma = 25kN/m^3$;
- coeff. parziale di sicurezza $\gamma_c = 1.5$

Il calcestruzzo impiegato è C28/35 con le seguenti caratteristiche:

- resistenza caratteristica cilindrica $f_{ck} = 28MPa$;
- resistenza caratteristica cubica $R_{ck} = 35MPa$;
- modulo di elasticità normale E = 30000MPa:
- peso specifico medio $\gamma = 25kN/m^3$;
- coeff. parziale di sicurezza $\gamma_c = 1.5$

Le armature sono in acciaio **B450C** con le seguenti caratteristiche:

- tensione di snervamento caratteristica $f_{vk} = 450MPa$;
- tensione di rottura caratteristica $f_{tk} = 540MPa$;
- modulo di elasticità normale E = 200000 MPa;
- coeff. parziale di sicurezza $\gamma_s = 1.15$

L'acciaio da carpenteria impiegato è S235 JR con le caratteristiche seguenti:

- modulo di elasticità E = 210000MPa
- carico di rottura alla trazione $f_{tk} = 360MPa$
- carico di snervamento alla trazione $f_{tk} = 235MPa$
- peso specifico $\gamma = 7.87kN/m^3$
- coeff. parziale di sicurezza $\gamma_{Mo} = 1.05$; $\gamma_{M2} = 1.25$

Mattoni blocchi semipieni fbk>100 kg/cm2;

Malta di cemento tipo M10;

La *muratura esistente* risulta caratterizzata dai seguenti parametri:

- Livello di conoscenza attribuito: LC 2
- Fattore di Confidenza: FC=1.20
- Coefficiente correttivo per malta buona (Tabella C.8.5.II Circolare 7/2019) fm^{0.35}=1.54 da applicare sia ai parametri di resistenza che ai moduli elastici
- Valori di riferimento dei parametri meccanici (Tabella C8.5.1 Circolare 7/2019):

 $f_{\rm m} = 345 \ {\rm N/cm^2}$

 $\tau_0 = 9 \text{ N/cm}^2$

 $E = 1500 \text{ N/mm}^2$

 $G = 500 \text{ N/mm}^2$

 $w = 18 \text{ kN/m}^3$

I materiali in opera dall'analisi di vulnerabilità sismica eseguita dall'ing. Sermonesi e dalla pratica originale del complesso scolastico risultano essere: Calcestruzzo C20/25; Acciaio FeB44k per armature longitudinali e FeB32k per le staffe. I parametri meccanici di tali materiali verranno divisi per il fattore di confidenza FC=1.35 avendo posto l'analisi in un livello di conoscenza LC1.

4. ELABORATI GRAFICI ESECUTIVI E PARTICOLARI COSTRUTTIVI

Si vedano elaborati grafici

5. PIANO DI MANUTENZIONE DELLA PARTE STRUTTURALE DELL'OPERA

Il piano di manutenzione è il documento complementare al progetto esecutivo che prevede, pianifica e programma, tenendo conto degli elaborati progettuali esecutivi effettivamente realizzati, l'attività di manutenzione dell'intervento al fine di mantenerne nel tempo la funzionalità, le caratteristiche di qualità, l'efficienza ed il valore economico. Esso è composto dal manuale d'uso, dal manuale di manutenzione e dal programma di manutenzione. Art. 23 c. 8 D. Lgs. n. 50/2016 (Nuovo Codice dei contratti pubblici), art. 38 D.P.R. n. 207/2010 (Regolamento di attuazione al Codice dei contratti pubblici).

MANUALE D'USO

Strutture di elevazione

Pareti in muratura

Descrizione: Strutture verticali portanti costruite con elementi artificiali o naturali collegati con strati di malta, che trasferiscono al piano di fondazione le sollecitazioni statiche e sismiche trasmesse dai piani della sovrastruttura.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: Le pareti di muratura sono elementi strutturali portanti progettati per resistere a fenomeni di schiacciamento, flessione e taglio nei confronti dei carichi trasmessi dalle varie parti della struttura. Inoltre devono soddisfare le condizioni di protezione degli ambienti interni secondo i criteri di vivibilità e utilizzo connessi alla destinazione d'uso dei vari locali che racchiudono.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Pareti sismiche in c.a.

Descrizione: Strutture verticali in cemento armato, formate da un volume parallelepipedo di tipo piano con due dimensioni predominanti (lunghezza e larghezza) rispetto alla terza (altezza della sezione), aventi la funzione di trasferire al piano di fondazione le sollecitazioni statiche e sismiche trasmesse dai piani della sovrastruttura.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: Le pareti sismiche in c.a. sono elementi strutturali portanti progettati per resistere a fenomeni di pressoflessione e taglio nei confronti dei carichi trasmessi dalle varie parti della struttura, soprattutto nei casi di sisma. Inoltre svolgono anche la funzione di delimitazione e protezione degli ambienti interni.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Pilastri in acciaio

Descrizione: Strutture verticali in acciaio, costituite generalmente da profilati metallici presagomati o ottenuti per composizione saldata, aventi la funzione di trasferire al piano di fondazione le sollecitazioni statiche e sismiche trasmesse dai piani della sovrastruttura.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: I pilastri in acciaio sono elementi strutturali portanti che, una volta avvenuta la connessione tra i componenti dei vari collegamenti, sono progettati per resistere a fenomeni di pressoflessione e taglio nei confronti dei carichi trasmessi dalle varie parti della struttura e che assumono una configurazione deformata dipendente anche dalle condizioni di vincolo presenti alle loro estremità.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Pilastri in c.a.

Descrizione: Strutture verticali in cemento armato, formate da un volume parallelepipedo di tipo lineare con una dimensione predominante (lunghezza) rispetto alle altre (larghezza e altezza della sezione),

aventi la funzione di trasferire al piano di fondazione le sollecitazioni statiche e sismiche trasmesse dai piani della sovrastruttura.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: I pilastri in c.a. sono elementi strutturali portanti progettati per resistere a fenomeni di pressoflessione e taglio nei confronti dei carichi trasmessi dalle varie parti della struttura.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Travi in acciaio

Descrizione: Strutture orizzontali o inclinate in acciaio, costituite generalmente da profilati metallici presagomati o ottenuti per composizione saldata, aventi la funzione di trasferire i carichi dei piani della sovrastruttura agli elementi strutturali verticali.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: Le travi in acciaio sono elementi strutturali portanti che, una volta avvenuta la connessione tra i componenti dei vari collegamenti, sono progettati per resistere a fenomeni di pressoflessione, taglio e torsione nei confronti dei carichi trasmessi dalle varie parti della struttura e che assumono una configurazione deformata dipendente anche dalle condizioni di vincolo presenti alle loro estremità.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Travi in c.a.

Descrizione: Strutture orizzontali o inclinate in cemento armato, formate da un volume parallelepipedo di tipo lineare con una dimensione predominante (lunghezza) rispetto alle altre (larghezza e altezza della sezione), aventi la funzione di trasferire i carichi dei piani della sovrastruttura agli elementi strutturali verticali.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: Le travi in c.a. sono elementi strutturali portanti progettati per resistere a fenomeni di pressoflessione, taglio e torsione nei confronti dei carichi trasmessi dalle varie parti della struttura.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Strutture in fondazione

Travi di fondazione

Descrizione: Strutture di fondazione diretta di tipo continuo con sviluppo lineare, che trasmettono le sollecitazioni statiche e sismiche della sovrastruttura al terreno.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: Le travi di fondazione sono elementi progettati per resistere: a rotture di taglio lungo superfici di scorrimento nel terreno, ad eccessive variazioni di volume del complesso di terreno interessato, ai cedimenti differenziali nei punti di contatto con il terreno.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Strutture secondarie

Solai in latero-cemento

Descrizione: Strutture piane portanti, orizzontali o inclinate, aventi la funzione di realizzare i piani di calpestio e i piani di copertura delle strutture, trasferendone i carichi agli elementi strutturali orizzontali (travi). I solai in latero-cemento sono costituiti da file di pignatte o tavelle in laterizio che si alternano a nervature (travetti), integrate da una soletta superiore in cemento armato; la funzione resistente è affidata al binomio soletta-travetti, mentre gli elementi in laterizio hanno la funzione di riempimento/alleggerimento e, di conseguenza, vi è un comportamento resistente prevalentemente monodirezionale.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: I solai in latero-cemento sono elementi strutturali progettati per resistere a fenomeni di flessione e taglio nei confronti dei carichi di progetto ad essi applicati, mantenendo livelli accettabili di deformazione.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Solette in c.a.

Descrizione: Strutture piane portanti in cemento armato, orizzontali o inclinate, aventi la funzione di realizzare i piani di calpestio e i piani di copertura delle strutture e che trasmettono i carichi di piano agli elementi strutturali orizzontali (travi).

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Modalità d'uso: Le solette in cemento armato sono elementi strutturali progettati per resistere a fenomeni di flessione e taglio nei confronti dei carichi di progetto ad essi applicati, mantenendo livelli accettabili di deformazione.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

MANUALE DI MANUTENZIONE

Strutture di elevazione

Pareti in muratura

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Attacco biologico

Descrizione: Presenza di muffe biologiche che si manifestano come un deposito superficiale di microrganismi di colore variabile anche con nascita di vegetazione caratterizzata dalla formazione di muschi e piante lungo la superficie dell'elemento strutturale.

Cause: Esposizione prolungata all'azione diretta degli agenti atmosferici e a fattori ambientali esterni; infiltrazioni di acqua e/o umidità in microfessure o cavità presenti sulla superficie dell'elemento.

Effetto: Degrado generalizzato dell'elemento strutturale; possibile creazione di crepe e fessure.

Valutazione: Lieve

Risorse necessarie: Interventi specifici di pulizia; malte; stucchi; opere provvisionali; attrezzature

manuali.

Esecutore: Ditta specializzata

<u>Deterioramento</u>

Descrizione: Deterioramento degli elementi artificiali o naturali per esposizione agli agenti atmosferici che si può presentare con erosione e sgretolamenti superficiali, fessurazioni, decolorazione o presenza di macchie di varia natura.

Cause: Agenti atmosferici; ammaloramenti; minime sollecitazioni meccaniche esterne.

Effetto: Calo della durabilità, riduzione della stabilità della parete.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, nuovi componenti, stucchi, malte.

Esecutore: Ditta specializzata

Disgregazione giunti

Descrizione: Disgregazione e degrado degli strati dei giunti di malta rilevabili con distacchi o erosione di materiale, piccole crepe e cambiamenti di colorazione.

Cause: Ammaloramenti; minime sollecitazioni meccaniche esterne; agenti atmosferici eterni; fattori ambientali.

Effetto: Esposizione eccessiva all'azione degli agenti atmosferici; incremento degli ammaloramenti fino alla creazione di vere e proprie lesioni con perdita di stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, stucchi, malte, trattamenti specifici.

Esecutore: Utente

<u>Lesioni</u>

Descrizione: Rotture che si manifestano con l'interruzione del tessuto strutturale dell'elemento, sia negli elementi artificiali o naturali che nei giunti di malta.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale; cedimenti strutturali e/o del terreno; eccessive deformazioni.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale e della struttura in generale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, nuovi componenti, rinforzi, stucchi, malte, trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Umidità

Descrizione: Presenza di chiazze o zone di umidità, generalmente in aree dell'elemento in prossimità del terreno e/o delle fondazioni.

Cause: Esposizione prolungata all'azione diretta degli agenti atmosferici e a fattori ambientali esterni; presenza di microfratture, screpolature o cavità sulla superficie dell'elemento che agevolano l'assorbimento di acqua.

Effetto: Ammaloramento degli elementi costituenti la muratura con perdita, nel tempo, delle caratteristiche di durabilità e di resistenza con probabile nascita di altre anomalie.

Valutazione: Grave

Risorse necessarie: Prodotti specifici; malte; stucchi; opere provvisionali; attrezzature manuali.

Esecutore: Ditta specializzata

Pareti sismiche in c.a.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Alterazione finitura superficiale

Descrizione: Mutamento del livello qualitativo della superficie di calcestruzzo con variazioni cromatiche, formazione di sostanze e/o efflorescenze, presenza di fori e porosità di grandezza e distribuzione irregolare e, in generale, aspetto degradato.

Cause: Agenti atmosferici e fattori ambientali; formazione di bolle d'aria al momento del getto; assenza di adeguato trattamento protettivo.

Effetto: Incremento delle porosità e rugosità della superficie con creazione di cavità fino alla perdita del ricoprimento delle armature metalliche.

Valutazione: Lieve

Risorse necessarie: Attrezzature manuali, vernici, malte, idrorepellenti, resine e trattamenti specifici.

Esecutore: Utente

Corrosione

Descrizione: Degradazione che implica l'evolversi di processi chimici che portano alla corrosione delle armature in acciaio per carbonatazione del ricoprimento di calcestruzzo o per cloruri, visibile con distacchi del copriferro, lesioni e striature di ruggine.

Cause: Fattori esterni ambientali o climatici; errata realizzazione dell'elemento strutturale e dei getti di calcestruzzo: manutenzione carente: cause accidentali.

Effetto: Riduzione della stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine, vernici, malte e trattamenti specifici, opere

provvisionali.

Esecutore: Ditta specializzata

Deposito superficiale

Descrizione: Accumulo di polvere e/o materiali estranei, anche di natura biologica, di spessore e consistenza variabili.

Cause: Agenti atmosferici e fattori ambientali esterni; condizioni termo igrometriche interne dannose; assenza di adeguato trattamento protettivo.

Effetto: Degradazione e decadimento dell'aspetto e della finitura superficiale dell'elemento strutturale.

Valutazione: Lieve

Risorse necessarie: Attrezzature manuali, vernici, malte, idrorepellenti, e trattamenti specifici.

Esecutore: Utente

Distacco o erosione

Descrizione: Disgregazione e distacco di parti del materiale dalla superficie dell'elemento strutturale, di forma e spessori irregolari e dimensioni variabili.

Cause: Variazioni di temperatura; penetrazione di acqua; cause esterne.

Effetto: Perdita del ricoprimento delle armature metalliche; ampliamento delle erosioni fino alla creazione di lesioni con perdita di resistenza nell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, trattamenti specifici.

Esecutore: Ditta specializzata

Fessurazioni

Descrizione: Degrado superficiale che si manifesta con la comparsa di fessure e crepe sulla superficie dell'elemento strutturale.

Cause: Ritiro; cedimenti strutturali e/o del terreno; mutamenti di carico e/o temperatura; eccessive deformazioni.

Effetto: Esposizione delle armature agli agenti corrosivi; ampliamento delle fessurazioni stesse con ramificazioni più o meno profonde.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, georesine, malte, macchine di pompaggio a controllo, trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Lesioni

Descrizione: Rotture che si manifestano con l'interruzione del tessuto strutturale dell'elemento, le cui caratteristiche e andamento ne definiscono l'importanza e il tipo.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, malte, rinforzi, opere provvisionali, elementi di sostegno.

Esecutore: Ditta specializzata

Pilastri in acciaio

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Bolle o screpolature

Descrizione: Presenza di bolle o screpolature dello strato protettivo superficiale con pericolo di corrosione e formazione di ruggine.

Cause: Azione degli agenti atmosferici e fattori ambientali; urti o minime sollecitazioni meccaniche esterne; perdita di adesione dello strato protettivo.

Effetto: Esposizione dell'elemento metallico agli agenti corrosivi e alla formazione di ruggine.

Valutazione: Moderata

Risorse necessarie: Prodotti antiruggine e/o passivanti, vernici, attrezzature manuali, trattamenti

specifici.

Esecutore: Ditta specializzata

Corrosione o presenza di ruggine

Descrizione: Presenza di zone corrose dalla ruggine, estese o localizzate anche in corrispondenza dei giunti e degli elementi di giunzione.

Cause: Perdita degli strati protettivi e/o passivanti; esposizione agli agenti atmosferici e fattori ambientali; presenza di agenti chimici.

Effetto: Riduzione degli spessori delle varie parti dell'elemento; perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Prodotti antiruggine, passivanti, vernici, prodotti e/o trattamenti specifici per la rimozione della ruggine, attrezzature manuali.

Esecutore: Ditta specializzata *Deformazioni o distorsioni*

Descrizione: Presenza di evidenti ed eccessive variazioni geometriche e di forma dell'elemento strutturale e/o di locali distorsioni delle lamiere di metallo che costituiscono l'elemento stesso.

Cause: Le eccessive deformazioni e distorsioni si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Nuovi componenti, elementi di rinforzo, opere provvisionali.

Esecutore: Ditta specializzata

Imbozzamenti locali

Descrizione: Fenomeno d'instabilità locale che si può presentare nelle lamiere metalliche costituenti un elemento strutturale in acciaio, le quali si instabilizzano fuori dal piano piegandosi e corrugandosi.

Cause: Carichi concentrati; cambiamento delle condizioni di carico.

Effetto: Perdita di stabilità e di portanza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Elementi di rinforzo, irrigidimenti, nuovi componenti, attrezzature per saldature in

opera.

Esecutore: Ditta specializzata *Serraggio elementi giuntati*

Descrizione: Perdita della forza di serraggio nei bulloni costituenti le giunzioni tra elementi in acciaio.

Cause: Non corretta messa in opera degli elementi giuntati; cambiamento delle condizioni di carico;

cause esterne.

Effetto: Perdita di resistenza della giunzione e quindi perdita di stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, attrezzature speciali, chiave dinamometrica.

Esecutore: Ditta specializzata

Trattamenti ignifughi

Descrizione: Perdita della protezione e/o dei rivestimenti ignifughi.

Cause: Agenti atmosferici e fattori ambientali esterni; ammaloramenti dei rivestimenti; minime sollecitazioni meccaniche esterne.

Effetto: Perdita della protezione nei confronti delle elevate temperature che portano deformazioni notevoli e quindi il possibile collasso degli elementi strutturali.

Valutazione: Grave

Risorse necessarie: Prodotti ignifughi, attrezzature manuali, trattamenti specifici.

Esecutore: Ditta specializzata

Pilastri in c.a.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Alterazione finitura superficiale

Descrizione: Mutamento del livello qualitativo della superficie di calcestruzzo con variazioni cromatiche, formazione di sostanze e/o efflorescenze, presenza di fori e porosità di grandezza e distribuzione irregolare e, in generale, aspetto degradato.

Cause: Agenti atmosferici e fattori ambientali; formazione di bolle d'aria al momento del getto; assenza di adeguato trattamento protettivo.

Effetto: Incremento delle porosità e rugosità della superficie con creazione di cavità fino alla perdita del ricoprimento delle armature metalliche.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, vernici, malte, idrorepellenti, resine e trattamenti specifici.

Esecutore: Utente

Corrosione

Descrizione: Degradazione che implica l'evolversi di processi chimici che portano alla corrosione delle armature in acciaio per carbonatazione del ricoprimento di calcestruzzo o per cloruri, visibile con distacchi del copriferro, lesioni e striature di ruggine.

Cause: Fattori esterni ambientali o climatici; errata realizzazione dell'elemento strutturale e dei getti di calcestruzzo; manutenzione carente; cause accidentali.

Effetto: Riduzione della stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine, vernici, malte e trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Deposito superficiale

Descrizione: Accumulo di polvere e/o materiali estranei, anche di natura biologica, di spessore e consistenza variabili.

Cause: Agenti atmosferici e fattori ambientali esterni; condizioni termo igrometriche interne dannose; assenza di adeguato trattamento protettivo.

Effetto: Degradazione e decadimento dell'aspetto e della finitura superficiale dell'elemento strutturale.

Valutazione: Lieve

Risorse necessarie: Attrezzature manuali, vernici, malte, idrorepellenti, e trattamenti specifici.

Esecutore: Utente *Distacco o erosione*

Descrizione: Disgregazione e distacco di parti del materiale dalla superficie dell'elemento strutturale, di forma e spessori irregolari e dimensioni variabili.

Cause: Variazioni di temperatura; penetrazione di acqua; cause esterne.

Effetto: Perdita del ricoprimento delle armature metalliche; ampliamento delle erosioni fino alla creazione di lesioni con perdita di resistenza nell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, trattamenti specifici.

Esecutore: Ditta specializzata

Fessurazioni

Descrizione: Degrado superficiale che si manifesta con la comparsa di fessure e crepe sulla superficie dell'elemento strutturale.

Cause: Ritiro, cedimenti strutturali e/o del terreno; mutamenti di carico e/o temperatura; eccessive deformazioni.

Effetto: Esposizione delle armature agli agenti corrosivi; ampliamento delle fessurazioni stesse con ramificazioni più o meno profonde.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, georesine, malte, macchine di pompaggio a controllo, trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Lesioni

Descrizione: Rotture che si manifestano con l'interruzione del tessuto strutturale dell'elemento, le cui caratteristiche e andamento ne definiscono l'importanza e il tipo.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, malte, rinforzi, opere provvisionali, elementi di sostegno.

Esecutore: Ditta specializzata

Travi in acciaio

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Bolle o screpolature

Descrizione: Presenza di bolle o screpolature dello strato protettivo superficiale con pericolo di corrosione e formazione di ruggine.

Cause: Azione degli agenti atmosferici e fattori ambientali; urti o minime sollecitazioni meccaniche esterne; perdita di adesione dello strato protettivo.

Effetto: Esposizione dell'elemento metallico agli agenti corrosivi e alla formazione di ruggine.

Valutazione: Moderata

Risorse necessarie: Prodotti antiruggine e/o passivanti, vernici, attrezzature manuali, trattamenti specifici.

Esecutore: Ditta specializzata

Corrosione o presenza di ruggine

Descrizione: Presenza di zone corrose dalla ruggine, estese o localizzate anche in corrispondenza dei giunti e degli elementi di giunzione.

Cause: Perdita degli strati protettivi e/o passivanti; esposizione agli agenti atmosferici e fattori ambientali; presenza di agenti chimici.

Effetto: Riduzione degli spessori delle varie parti dell'elemento; perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Prodotti antiruggine, passivanti, vernici, prodotti e/o trattamenti specifici per la rimozione della ruggine, attrezzature manuali.

Esecutore: Ditta specializzata *Deformazioni o distorsioni*

Descrizione: Presenza di evidenti ed eccessive variazioni geometriche e di forma dell'elemento strutturale e/o di locali distorsioni delle lamiere di metallo che costituiscono l'elemento stesso.

Cause: Le eccessive deformazioni e distorsioni si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Nuovi componenti, elementi di rinforzo, opere provvisionali.

Esecutore: Ditta specializzata

Imbozzamenti locali

Descrizione: Fenomeno d'instabilità locale che si può presentare nelle lamiere metalliche costituenti un elemento strutturale in acciaio, le quali si instabilizzano fuori dal piano piegandosi e corrugandosi.

Cause: Carichi concentrati; cambiamento delle condizioni di carico.

Effetto: Perdita di stabilità e di portanza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Elementi di rinforzo, irrigidimenti, nuovi componenti, attrezzature per saldature in

opera.

Esecutore: Ditta specializzata Serraggio elementi giuntati

Descrizione: Perdita della forza di serraggio nei bulloni costituenti le giunzioni tra elementi in acciaio.

Cause: Non corretta messa in opera degli elementi giuntati; cambiamento delle condizioni di carico; cause esterne.

Effetto: Perdita di resistenza della giunzione e quindi perdita di stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, attrezzature speciali, chiave dinamometrica.

Esecutore: Ditta specializzata

Trattamenti ignifughi

Descrizione: Perdita della protezione e/o dei rivestimenti ignifughi.

Cause: Agenti atmosferici e fattori ambientali esterni; ammaloramenti dei rivestimenti; minime

sollecitazioni meccaniche esterne.

Effetto: Perdita della protezione nei confronti delle elevate temperature che portano deformazioni notevoli e guindi il possibile collasso degli elementi strutturali.

Valutazione: Grave

Risorse necessarie: Prodotti ignifughi, attrezzature manuali, trattamenti specifici.

Esecutore: Ditta specializzata

Travi in c.a.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Alterazione finitura superficiale

Descrizione: Mutamento del livello qualitativo della superficie di calcestruzzo con variazioni cromatiche, formazione di sostanze e/o efflorescenze, presenza di fori e porosità di grandezza e distribuzione irregolare e, in generale, aspetto degradato.

Cause: Agenti atmosferici e fattori ambientali; formazione di bolle d'aria al momento del getto; assenza di adeguato trattamento protettivo.

Effetto: Incremento delle porosità e rugosità della superficie con creazione di cavità fino alla perdita del ricoprimento delle armature metalliche.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, vernici, malte, idrorepellenti, resine e trattamenti specifici.

Esecutore: Utente

Corrosione

Descrizione: Degradazione che implica l'evolversi di processi chimici che portano alla corrosione delle armature in acciaio per carbonatazione del ricoprimento di calcestruzzo o per cloruri, visibile con distacchi del copriferro, lesioni e striature di ruggine.

Cause: Fattori esterni ambientali o climatici; errata realizzazione dell'elemento strutturale e dei getti di calcestruzzo; manutenzione carente; cause accidentali.

Effetto: Riduzione della stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine, vernici, malte e trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Deposito superficiale

Descrizione: Accumulo di polvere e/o materiali estranei, anche di natura biologica, di spessore e consistenza variabili.

Cause: Agenti atmosferici e fattori ambientali esterni; condizioni termo igrometriche interne dannose; assenza di adeguato trattamento protettivo.

Effetto: Degradazione e decadimento dell'aspetto e della finitura superficiale dell'elemento strutturale.

Valutazione: Lieve

Risorse necessarie: Attrezzature manuali, vernici, malte, idrorepellenti, e trattamenti specifici.

Esecutore: Utente

Distacco o erosione

Descrizione: Disgregazione e distacco di parti del materiale dalla superficie dell'elemento strutturale, di forma e spessori irregolari e dimensioni variabili.

Cause: Variazioni di temperatura; penetrazione di acqua; cause esterne.

Effetto: Perdita del ricoprimento delle armature metalliche; ampliamento delle erosioni fino alla creazione di lesioni con perdita di resistenza nell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, trattamenti specifici.

Esecutore: Ditta specializzata

<u>Fessurazioni</u>

Descrizione: Degrado superficiale che si manifesta con la comparsa di fessure e crepe sulla superficie dell'elemento strutturale.

Cause: Ritiro, cedimenti strutturali e/o del terreno; mutamenti di carico e/o temperatura; eccessive deformazioni.

Effetto: Esposizione delle armature agli agenti corrosivi; ampliamento delle fessurazioni stesse con ramificazioni più o meno profonde.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, georesine, malte, macchine di pompaggio a controllo, trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Lesioni

Descrizione: Rotture che si manifestano con l'interruzione del tessuto strutturale dell'elemento, le cui caratteristiche e andamento ne definiscono l'importanza e il tipo.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, malte, rinforzi, opere provvisionali, elementi di sostegno.

Esecutore: Ditta specializzata

Strutture in fondazione

Travi di fondazione

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Cedimenti

Descrizione: Dissesti uniformi e/o differenziali con manifestazioni di abbassamento del piano di imposta della fondazione.

Cause: Mutamenti delle condizioni del terreno dovuti a cause quali: variazione della falda freatica, rottura di fognature o condutture idriche in prossimità della fondazione, ecc. Mutamenti delle condizioni di carico applicate.

Effetto: Riduzione della stabilità dell'elemento strutturale; riduzione della stabilità a livello globale della struttura; lesioni all'elemento strutturale e/o alla sovrastruttura.

Valutazione: Grave

Risorse necessarie: Opere di consolidamento del terreno o della struttura, georesine, opere di sostegno, opere provvisionali.

Esecutore: Ditta specializzata

Corrosione

Descrizione: Degradazione che implica l'evolversi di processi chimici che portano alla corrosione delle armature in acciaio per carbonatazione del ricoprimento di calcestruzzo o per cloruri, visibile con distacchi del copriferro, lesioni e striature di ruggine.

Cause: Fattori esterni ambientali o climatici; errata realizzazione dell'elemento strutturale e dei getti di calcestruzzo; manutenzione carente; cause accidentali.

Effetto: Riduzione della stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine, vernici, malte e trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Fessurazioni

Descrizione: Degrado superficiale che si manifesta con fessurazioni e crepe.

Cause: Ritiro; cedimenti strutturali e/o del terreno; mutamenti di carico e/o temperatura; eccessive deformazioni.

Effetto: Esposizione delle armature agli agenti corrosivi; ampliamento delle fessurazioni stesse con ramificazioni più o meno profonde.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, georesine, malte, macchine di pompaggio a controllo, trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Lesioni

Descrizione: Rotture che si manifestano con l'interruzione del tessuto strutturale dell'elemento, le cui caratteristiche e andamento ne definiscono l'importanza e il tipo.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, malte, rinforzi, opere provvisionali, sottofondazioni locali.

Esecutore: Ditta specializzata

Non perpendicolarità dell'edificio

Descrizione: L'edificio è sottoposto a spostamenti, rotazioni o alterazioni della propria posizione statica di normale funzionamento.

Cause: Cedimenti; rotture; eventi di natura diversa.

Effetto: Riduzione della stabilità dell'elemento strutturale e dell'edificio.

Valutazione: Grave

Risorse necessarie: Opere di consolidamento del terreno o della struttura da decidersi dopo indagini specifiche, opere di sostegno, opere provvisionali.

Esecutore: Ditta specializzata

Strutture secondarie

Solai in latero-cemento

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

Deformazioni

Descrizione: Variazioni geometriche e/o morfologiche degli elementi strutturali, che si possono manifestare con avvallamenti e pendenze anomale compromettendone la planarità.

Cause: Mutamenti di carico e/o eccessivi carichi permanenti; eventuali modifiche dell'assetto geometrico della struttura; variazioni termiche.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale con possibili collassi strutturali.

Valutazione: Grave

Risorse necessarie: Elementi di rinforzo, sostituzione elementi, attrezzature speciali e manuali, prodotti per il consolidamento, opere provvisionali.

Esecutore: Ditta specializzata

Degrado-distacchi

Descrizione: Deterioramento e degrado delle superfici esterne di finitura dell'elemento strutturale con la possibile formazione di scheggiature, sgretolamenti, danneggiamento delle sigillature e anche con distacchi di materiale e/o dell'eventuale strato di intonaco presente.

Cause: Ammaloramenti; usura; minime sollecitazioni meccaniche esterne; fattori ambientali; infiltrazioni d'acqua.

Effetto: Degradazione e decadimento dell'aspetto e delle finiture esterne dell'elemento strutturale tali da poterne pregiudicare l'uso.

Valutazione: Lieve

Risorse necessarie: Nuovi rivestimenti, malte, attrezzature manuali, prodotti specifici.

Esecutore: Ditta specializzata

Esposizione ferri d'armatura

Descrizione: Distacchi o erosioni di parte dei ricoprimenti di calcestruzzo con esposizione dei ferri di

armatura.

Cause: Variazioni di temperatura; penetrazione di acqua; carbonatazione del ricoprimento di calcestruzzo; cause esterne.

Effetto: Esposizione dei ferri di armatura a fenomeni di corrosione per l'azione degli agenti atmosferici; ampliamento delle erosioni fino alla creazione di lesioni con perdita di resistenza nell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, trattamenti specifici.

Esecutore: Ditta specializzata

Lesioni-dissesti

Descrizione: Aperture o lesioni individuabili per eccesso di fessurazioni fra i laterizi ed i travetti, che possono anche essere ortogonali o diagonali rispetto ai giunti ed interessare una parte o l'intero spessore della struttura.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, componenti di rinforzo, nuovi elementi, opere provvisionali.

Esecutore: Ditta specializzata

Umidità

Descrizione: Comparsa di macchie di umidità dovute all'assorbimento di acqua, in particolare in corrispondenza dei giunti e dei ponti termici.

Cause: Presenza di fessure, screpolature o cavità sulle superfici dell'elemento; esposizione prolungata all'azione diretta degli agenti atmosferici, dell'umidità o dell'acqua stessa.

Effetto: Degrado e decadimento dell'elemento strutturale e/o dei suoi componenti e conseguente disgregazione con perdita di resistenza e stabilità.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, malte, vernici, prodotti idrorepellenti, trattamenti specifici.

Esecutore: Ditta specializzata

Solette in c.a.

Collocazione: Vedasi le tavole architettoniche e/o strutturali relative al progetto.

Rappresentazione grafica: Vedi disegni esecutivi allegati.

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Anomalie riscontrabili

<u>Corrosione</u>

Descrizione: Degradazione che implica l'evolversi di processi chimici che portano alla corrosione delle armature in acciaio per carbonatazione del ricoprimento di calcestruzzo o per cloruri, visibile con distacchi del copriferro, lesioni e striature di ruggine.

Cause: Fattori esterni ambientali o climatici; errata realizzazione dell'elemento strutturale e dei getti di calcestruzzo; manutenzione carente; cause accidentali.

Effetto: Riduzione della stabilità dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine, vernici, malte e trattamenti specifici, opere

provvisionali.

Esecutore: Ditta specializzata

Deformazioni

Descrizione: Variazioni geometriche e/o morfologiche dell'elemento strutturale, che si possono manifestare con avvallamenti e pendenze anomale compromettendone la planarità.

Cause: Mutamenti di carico e/o eccessivi carichi permanenti; eventuali modifiche dell'assetto geometrico della struttura; sbalzi termici.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale con possibili collassi strutturali.

Valutazione: Grave

Risorse necessarie: Elementi di rinforzo, sostituzione elementi, attrezzature speciali e manuali, prodotti per il consolidamento, opere provvisionali.

Esecutore: Ditta specializzata

Degrado-distacchi

Descrizione: Deterioramento e degrado delle superfici esterne di finitura dell'elemento strutturale con la possibile formazione di scheggiature, sgretolamenti, danneggiamento delle sigillature e anche con distacchi di materiale e/o dell'eventuale strato di intonaco presente.

Cause: Ammaloramenti; usura; minime sollecitazioni meccaniche esterne; fattori ambientali; infiltrazioni d'acqua.

Effetto: Degradazione e decadimento dell'aspetto e delle finiture esterne dell'elemento strutturale tali da poterne pregiudicare l'uso.

Valutazione: Lieve

Risorse necessarie: Nuovi rivestimenti, malte, attrezzature manuali, prodotti specifici.

Esecutore: Ditta specializzata

Fessurazioni

Descrizione: Degrado superficiale che si manifesta con la comparsa di fessure e crepe sulla superficie dell'elemento strutturale.

Cause: Ritiro; cedimenti strutturali; mutamenti di carico e/o temperatura; eccessive deformazioni.

Effetto: Esposizione delle armature agli agenti corrosivi; ampliamento delle fessurazioni stesse con ramificazioni più o meno profonde.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, georesine, malte, macchine di pompaggio a controllo, trattamenti specifici, opere provvisionali.

Esecutore: Ditta specializzata

Lesioni

Descrizione: Rotture che si manifestano con l'interruzione del tessuto strutturale dell'elemento, le cui caratteristiche e andamento ne definiscono l'importanza e il tipo.

Cause: Le lesioni e le rotture si manifestano quando lo sforzo a cui è sottoposto l'elemento strutturale supera la resistenza corrispondente del materiale.

Effetto: Perdita della stabilità e della resistenza dell'elemento strutturale.

Valutazione: Grave

Risorse necessarie: Attrezzature manuali, resine bicomponenti, malte, rinforzi, opere provvisionali, elementi di sostegno.

Esecutore: Ditta specializzata

Umidità

Descrizione: Comparsa di macchie di umidità dovute all'assorbimento di acqua, in particolare in corrispondenza dei giunti e dei ponti termici.

Cause: Presenza di fessure, screpolature o cavità sulle superfici dell'elemento; esposizione prolungata all'azione diretta degli agenti atmosferici, dell'umidità o dell'acqua stessa.

Effetto: Degrado e decadimento dell'elemento strutturale e/o dei suoi componenti e conseguente disgregazione con perdita di resistenza e stabilità.

Valutazione: Moderata

Risorse necessarie: Attrezzature manuali, malte, vernici, prodotti idrorepellenti, trattamenti specifici.

Esecutore: Ditta specializzata

PROGRAMMA DI MANUTENZIONE

Sottoprogramma delle prestazioni

Strutture di elevazione

Pareti in muratura

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Inoltre devono garantire la tenuta agli agenti atmosferici esterni. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Pareti sismiche in c.a.

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Pilastri in acciaio

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Pilastri in c.a.

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Travi in acciaio

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Ciclo di vita utile: 20

Travi in c.a.

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Strutture in fondazione

Travi di fondazione

Livello minimo delle prestazioni: Tali elementi di fondazione devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Ciclo di vita utile: 50 Strutture secondarie

Solai in latero-cemento

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Solette in c.a.

Livello minimo delle prestazioni: Tali elementi strutturali devono sviluppare resistenza e stabilità nei confronti dei carichi e delle sollecitazioni come previsti dal progetto e contrastare l'insorgenza di eventuali deformazioni e cedimenti. Le caratteristiche dei materiali non devono essere inferiori a quanto stabilito nel progetto strutturale.

Ciclo di vita utile: 50

Sottoprogramma dei controlli

Strutture di elevazione

Pareti in muratura Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni. Verifica dell'integrità e perpendicolarità della struttura e delle possibili zone di terreno direttamente interessate dalla stessa.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Controllo dell'aspetto e della consistenza dell'elemento strutturale nel suo complesso e dei suoi componenti in specifico. Controllo dell'eventuale presenza di lesioni.

Modalità di controllo: A vista.

Periodicità: 1

Frequenza: Anni

Esecutore: Utente

Pareti sismiche in c.a. Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni o distacchi di materiale. Verifica dell'integrità e perpendicolarità della struttura e delle possibili zone di terreno direttamente interessate dalla stessa.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Controllo dell'aspetto e del degrado dell'elemento strutturale, della presenza di eventuali corrosioni dell'acciaio, di locali distacchi o riduzioni di copriferro o di fessurazioni del calcestruzzo.

Modalità di controllo: A vista.

Periodicità: 1

Frequenza: Anni
Esecutore: Utente

Pilastri in acciaio Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo del livello di serraggio degli elementi costituenti le giunzioni. Verifica dell'integrità e della presenza di distorsioni e deformazioni eccessive nell'elemento strutturale, nonchè della perpendicolarità della struttura.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Esame dell'aspetto e del degrado dell'elemento strutturale e dei suoi eventuali strati

protettivi. Controllo della presenza di possibili corrosioni dell'acciaio e di locali imbozzamenti.

Modalità di controllo: A vista.

Periodicità: 1

Frequenza: Anni

Esecutore: Utente

Pilastri in c.a.

Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni o distacchi di materiale. Verifica dell'integrità e perpendicolarità della struttura e delle possibili zone di terreno direttamente interessate dalla stessa.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Controllo dell'aspetto e del degrado dell'elemento strutturale, della presenza di eventuali corrosioni dell'acciaio, di locali distacchi o riduzioni di copriferro o di fessurazioni del calcestruzzo.

Modalità di controllo: A vista.

Periodicità: 1
Frequenza: Anni
Esecutore: Utente

Travi in acciaio

Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo del livello di serraggio degli elementi costituenti le giunzioni. Verifica dell'integrità e della presenza di distorsioni e deformazioni eccessive nell'elemento strutturale, nonchè della perpendicolarità della struttura.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Esame dell'aspetto e del degrado dell'elemento strutturale e dei suoi eventuali strati

protettivi. Controllo della presenza di possibili corrosioni dell'acciaio e di locali imbozzamenti.

Modalità di controllo: A vista.

Periodicità: 1
Frequenza: Anni
Esecutore: Utente

Travi in c.a.

Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni o distacchi di materiale. Verifica dell'integrità e perpendicolarità della struttura e delle possibili zone adiacenti all'elemento strutturale.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Controllo dell'aspetto e del degrado dell'elemento strutturale, della presenza di eventuali corrosioni dell'acciaio, di locali distacchi o riduzioni di copriferro o di fessurazioni del calcestruzzo.

Modalità di controllo: A vista.

Periodicità: 1

Frequenza: Anni

Esecutore: Utente

Strutture in fondazione

Travi di fondazione Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni. Verifica dell'integrità e perpendicolarità della struttura e delle zone di terreno direttamente interessate dalla stessa.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Strutture secondarie

Solai in latero-cemento Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni o distacchi di materiale. Verifica del livello deformativo, dell'integrità e orizzontalità dell'elemento strutturale.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1

Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Controllo dell'aspetto e del degrado dell'elemento strutturale, dei suoi rivestimenti e finiture eterne, della presenza di eventuali corrosioni dell'acciaio, di locali distacchi o riduzioni di copriferro e di fessurazioni del calcestruzzo e dei rivestimenti.

Modalità di controllo: A vista.

Periodicità: 1
Frequenza: Anni
Esecutore: Utente

Solette in c.a.

Controlli da effettuare

Controllo a cura di personale specializzato

Descrizione: Controllo della consistenza dell'elemento strutturale e dell'eventuale presenza di lesioni o distacchi di materiale. Verifica del livello deformativo, dell'integrità e orizzontalità dell'elemento strutturale.

Modalità di controllo: A vista e/o con l'ausilio di strumentazione idonea.

Periodicità: 1
Frequenza: Anni

Esecutore: Ditta specializzata

Controllo a vista

Descrizione: Controllo dell'aspetto e del degrado dell'elemento strutturale, dei suoi rivestimenti e finiture eterne, della presenza di eventuali corrosioni dell'acciaio, di locali distacchi o riduzioni di copriferro e di fessurazioni del calcestruzzo e dei rivestimenti.

Modalità di controllo: A vista.

Periodicità: 1

Frequenza: Anni

Esecutore: Utente

Sottoprogramma degli interventi di manutenzione

Strutture di elevazione

Pareti in muratura Manutenzioni da effettuare

Consolidamento muratura

Descrizione: Interventi di consolidamento della muratura tramite l'applicazione di prodotti consolidanti da effettuarsi su superfici pulite e/o pretrattate, con l'iniezione di resine epossidiche o adesivi fluidi per il ripristino e la chiusura delle fessure o attraverso la stuccatura dei giunti molto degradati o mancanti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Consolidamento terreno

Descrizione: Opere e/o procedimenti specifici di consolidamento del terreno da scegliere dopo indagini specifiche e approfondite. Trattamenti di miglioramento della resistenza delle fondazioni direttamente interessate dalle pareti di muratura, anche tramite l'impiego di georesine.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Demolizione e ricostruzione

Descrizione: Demolizione e ricostruzione di parti o zone di muratura degradate con sostituzione localizzata o estesa degli elementi artificiali/naturali con intervento di cuci-scuci.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Interventi di rinforzo muratura

Descrizione: Incremento della capacità portante della muratura con metodi diversi a seconda del livello di degrado e da scegliere dopo indagini specifiche e approfondite: - riempimento di fratture e vuoti interni mediante iniezioni di malta cementizia o resine sintetiche attraverso una serie di fori eseguiti nella muratura; - realizzazione di incamiciature della parete muraria attraverso l'inserimento di barre di acciaio rese solidali alla muratura con malte di consolidamento, oppure tramite il getto, in aderenza alla superficie muraria, di uno strato cementizio armato con rete metallica, reso solidale alla parete mediante chiodatura.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Pulizia superficie

Descrizione: Intervento di rimozione manuale o meccanica delle parti deteriorate o delle sostanze estranee accumulate attraverso sabbiature, idrolavaggi o con l'uso di prodotti chimici specifici.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Realizzazione sottofondazioni

Descrizione: Realizzazione di sottofondazioni locali o globali alla base della muratura o della relativa

fondazione.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Pareti sismiche in c.a. Manutenzioni da effettuare

Intervento per anomalie di corrosione

Descrizione: Opere di rimozione delle parti ammalorate e della ruggine. Ripristino dell'armatura metallica corrosa con vernici anticorrosive, malte, trattamenti specifici o anche attraverso l'uso di idonei passivanti per la protezione delle armature. Opere di protezione e/o ricostruzione dei copriferri mancanti.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Intervento per anomalie di fessurazione

Descrizione: Opere di ripristino delle fessure e consolidamento dell'integrità del materiale tramite l'utilizzo di resine, malte, cemento o vernici.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Pulitura e rimozione

Descrizione: Pulitura e rimozione del calcestruzzo ammalorato e/o di sostanze estranee accumulate sulla superficie dell'elemento strutturale mediante spazzolature, idrolavaggi o sabbiature a secco. Lavorazioni superficiali specifiche con l'uso di malte, vernici e/o prodotti specifici.

Esecutore: Utente

Requisiti: Periodo: 1

Frequenza: Anni

Rinforzo elemento

Descrizione: Realizzazione di interventi di rinforzo strutturale dell'elemento mediante la realizzazione di gabbie di armature integrative con getto di malte a ritiro controllato o attraverso l'applicazione di nuovi componenti di rinforzo che aumentino la sezione resistente dell'elemento strutturale.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Riparazione e ripresa delle lesioni

Descrizione: Interventi di riparazione e di ripristino dell'integrità e della resistenza dell'elemento strutturale lesionato tramite l'utilizzo di resine, malte, cemento o altri prodotti specifici, indicati anche per la ricostruzione delle parti di calcestruzzo mancanti. Tali trattamenti saranno eseguiti dopo una approfondita valutazione delle cause del difetto accertato e considerando che la lesione sia stabilizzata o meno.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Pilastri in acciaio

Manutenzioni da effettuare

Applicazione prodotti protettivi

Descrizione: Applicazione prodotti antiruggine con ripristino degli strati protettivi e/o passivanti, previa pulizia delle superfici da trattare.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Controllo e riapplicazione serraggio

Descrizione: Verifica ed eventualmente, riapplicazione delle forze di serraggio negli elementi giuntati.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Intervento di rinforzo

Descrizione: Realizzazione di elementi di rinforzo con piastre e profili da aggiungere all'elemento strutturale indebolito anche attraverso l'applicazione di irrigidimenti longitudinali e/o trasversali per le lamiere imbozzate.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Pulizia delle superfici metalliche

Descrizione: Spazzolature, sabbiature ed in generale opere ed interventi di rimozione della ruggine, della vernice in fase di distacco o di sostanze estranee eventualmente presenti sulla superficie dell'elemento strutturale, da effettuarsi manualmente o con mezzi meccanici.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Sostituzione elementi giunzione

Descrizione: Sostituzione degli elementi danneggiati facenti parte di una giunzione (lamiere, dadi, bulloni, rosette) con elementi della stessa classe e tipo.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Sostituzione elemento

Descrizione: Interventi di sostituzione dell'elemento o degli elementi eccessivamente deformati, danneggiati o usurati, considerando di sostituire anche i relativi collegamenti. Durante l'intervento si dovrà verificare e garantire la stabilità globale della struttura o dei singoli elementi che la costituiscono anche attraverso l'uso di opere provvisionali.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Trattamenti ignifughi

Descrizione: Trattamenti di rimozione e rifacimento del manto protettivo ignifugo danneggiato o ammalorato presente sulla superficie dell'elemento strutturale di acciaio.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Pilastri in c.a.

Manutenzioni da effettuare

Intervento per anomalie di corrosione

Descrizione: Opere di rimozione delle parti ammalorate e della ruggine. Ripristino dell'armatura metallica corrosa con vernici anticorrosive, malte, trattamenti specifici o anche attraverso l'uso di idonei passivanti per la protezione delle armature. Opere di protezione e/o ricostruzione dei copriferri mancanti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento per anomalie di fessurazione

Descrizione: Opere di ripristino delle fessure e consolidamento dell'integrità del materiale tramite

l'utilizzo di resine, malte, cemento o vernici.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Pulitura e rimozione

Descrizione: Pulitura e rimozione del calcestruzzo ammalorato e/o di sostanze estranee accumulate sulla superficie dell'elemento strutturale mediante spazzolature, idrolavaggi o sabbiature a secco. Lavorazioni superficiali specifiche con l'uso di malte, vernici e/o prodotti specifici.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Rinforzo elemento

Descrizione: Realizzazione di interventi di rinforzo strutturale dell'elemento mediante la realizzazione di gabbie di armature integrative con getto di malte a ritiro controllato o attraverso l'applicazione di nuovi componenti di rinforzo che aumentino la sezione resistente dell'elemento strutturale.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Riparazione e ripresa delle lesioni

Descrizione: Interventi di riparazione e di ripristino dell'integrità e della resistenza dell'elemento strutturale lesionato tramite l'utilizzo di resine, malte, cemento o altri prodotti specifici, indicati anche per la ricostruzione delle parti di calcestruzzo mancanti. Tali trattamenti saranno eseguiti dopo una approfondita valutazione delle cause del difetto accertato e considerando che la lesione sia stabilizzata o meno.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Travi in acciaio

Manutenzioni da effettuare

Applicazione prodotti protettivi

Descrizione: Applicazione prodotti antiruggine con ripristino degli strati protettivi e/o passivanti, previa pulizia delle superfici da trattare.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Controllo e riapplicazione serraggio

Descrizione: Verifica ed eventualmente, riapplicazione delle forze di serraggio negli elementi giuntati.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento di rinforzo

Descrizione: Realizzazione di elementi di rinforzo con piastre e profili da aggiungere all'elemento strutturale indebolito anche attraverso l'applicazione di irrigidimenti longitudinali e/o trasversali per le lamiere imbozzate.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Pulizia delle superfici metalliche

Descrizione: Spazzolature, sabbiature ed in generale opere ed interventi di rimozione della ruggine, della vernice in fase di distacco o di sostanze estranee eventualmente presenti sulla superficie dell'elemento strutturale, da effettuarsi manualmente o con mezzi meccanici.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Sostituzione elementi giunzione

Descrizione: Sostituzione degli elementi danneggiati facenti parte di una giunzione (lamiere, dadi, bulloni, rosette) con elementi della stessa classe e tipo.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Sostituzione elemento

Descrizione: Interventi di sostituzione dell'elemento o degli elementi eccessivamente deformati, danneggiati o usurati, considerando di sostituire anche i relativi collegamenti. Durante l'intervento si dovrà verificare e garantire la stabilità globale della struttura o dei singoli elementi che la costituiscono anche attraverso l'uso di opere provvisionali.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Trattamenti ignifughi

Descrizione: Trattamenti di rimozione e rifacimento del manto protettivo ignifugo danneggiato o

ammalorato presente sulla superficie dell'elemento strutturale di acciaio.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Travi in c.a.

Manutenzioni da effettuare

Intervento per anomalie di corrosione

Descrizione: Opere di rimozione delle parti ammalorate e della ruggine. Ripristino dell'armatura metallica corrosa con vernici anticorrosive, malte, trattamenti specifici o anche attraverso l'uso di idonei passivanti per la protezione delle armature. Opere di protezione e/o ricostruzione dei copriferri mancanti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento per anomalie di fessurazione

Descrizione: Opere di ripristino delle fessure e consolidamento dell'integrità del materiale tramite l'utilizzo di resine, malte, cemento o vernici.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Pulitura e rimozione

Descrizione: Pulitura e rimozione del calcestruzzo ammalorato e/o di sostanze estranee accumulate sulla superficie dell'elemento strutturale mediante spazzolature, idrolavaggi o sabbiature a secco. Lavorazioni superficiali specifiche con l'uso di malte, vernici e/o prodotti specifici.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Rinforzo elemento

Descrizione: Realizzazione di interventi di rinforzo strutturale dell'elemento mediante la realizzazione di gabbie di armature integrative con getto di malte a ritiro controllato o attraverso l'applicazione di nuovi componenti di rinforzo che aumentino la sezione resistente dell'elemento strutturale.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Riparazione e ripresa delle lesioni

Descrizione: Interventi di riparazione e di ripristino dell'integrità e della resistenza dell'elemento strutturale lesionato tramite l'utilizzo di resine, malte, cemento o altri prodotti specifici, indicati anche per la ricostruzione delle parti di calcestruzzo mancanti. Tali trattamenti saranno eseguiti dopo una approfondita valutazione delle cause del difetto accertato e considerando che la lesione sia stabilizzata o meno.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Ripristino configurazione statica

Descrizione: Interventi di consolidamento e di ripristino linearità e/o orizzontalità dell'elemento strutturale deformato, anche mediante l'applicazione di elementi aggiuntivi di sostegno.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Strutture in fondazione

Travi di fondazione

Manutenzioni da effettuare

Consolidamento terreno

Descrizione: Opere e/o procedimenti specifici di consolidamento del terreno da scegliere dopo indagini specifiche e approfondite. Trattamenti di miglioramento della resistenza delle fondazioni anche tramite l'impiego di georesine.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento per anomalie di corrosione

Descrizione: Opere di rimozione delle parti ammalorate e della ruggine. Ripristino dell'armatura metallica corrosa con vernici anticorrosive, malte, trattamenti specifici o anche attraverso l'uso di idonei passivanti per la protezione delle armature. Opere di protezione e/o ricostruzione dei copriferri mancanti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento per anomalie di fessurazione

Descrizione: Opere di ripristino delle fessure e consolidamento dell'integrità del materiale tramite l'utilizzo di resine, malte, cemento o vernici.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Realizzazione sottofondazioni

Descrizione: Realizzazione di sottofondazioni locali o globali a sostegno del sistema di fondazione e

della struttura.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Rinforzo elemento

Descrizione: Realizzazione di interventi di rinforzo strutturale dell'elemento mediante la realizzazione di gabbie di armature integrative con getto di malte a ritiro controllato o attraverso l'applicazione di nuovi componenti di rinforzo che aumentino la sezione resistente dell'elemento strutturale.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Riparazione e ripresa delle lesioni

Descrizione: Interventi di riparazione e di ripristino dell'integrità e della resistenza dell'elemento strutturale lesionato, tramite l'utilizzo di resine, malte, cemento o altri prodotti specifici, indicati anche per la ricostruzione delle parti di calcestruzzo mancanti; tali trattamenti saranno eseguiti dopo una approfondita valutazione delle cause del difetto accertato.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Strutture secondarie

Solai in latero-cemento

Manutenzioni da effettuare

Intervento per anomalie di corrosione

Descrizione: Opere di rimozione delle parti ammalorate e della ruggine. Ripristino dell'armatura metallica corrosa con vernici anticorrosive, malte, trattamenti specifici o anche attraverso l'uso di idonei passivanti per la protezione delle armature. Opere di protezione e/o ricostruzione dei copriferri mancanti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento per anomalie di fessurazione

Descrizione: Opere di ripristino delle fessure e consolidamento dell'integrità del materiale tramite

l'utilizzo di resine, malte, cemento o vernici.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Manutenzione rivestimenti

Descrizione: Sostituzione o riparazione dei rivestimenti ammalorati con utilizzo di materiali ad elevata resistenza all'usura e/o antisdrucciolo. Rimozioni e rifacimenti degli strati di intonaco eventualmente presenti.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Rinforzo elemento

Descrizione: Realizzazione di interventi di rinforzo strutturale dell'elemento mediante la realizzazione di gabbie di armature integrative con getto di malte a ritiro controllato o attraverso l'applicazione di nuovi componenti di rinforzo che aumentino la sezione resistente dell'elemento strutturale.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Riparazione e ripresa delle lesioni

Descrizione: Interventi di riparazione e di ripristino dell'integrità e della resistenza dell'elemento strutturale lesionato tramite l'utilizzo di resine, malte, cemento o altri prodotti specifici, indicati anche per la ricostruzione delle parti di calcestruzzo mancanti. Tali trattamenti saranno eseguiti dopo una approfondita valutazione delle cause del difetto accertato e considerando che la lesione sia stabilizzata o meno.

Esecutore: Ditta specializzata

Requisiti: Periodo: 1

Frequenza: Anni

Ripristino configurazione statica

Descrizione: Interventi di consolidamento e di ripristino planarità e/o orizzontalità dell'elemento strutturale deformato, anche mediante l'applicazione di elementi aggiuntivi di sostegno.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Solette in c.a.

Manutenzioni da effettuare

Intervento per anomalie di corrosione

Descrizione: Opere di rimozione delle parti ammalorate e della ruggine. Ripristino dell'armatura metallica corrosa con vernici anticorrosive, malte, trattamenti specifici o anche attraverso l'uso di idonei passivanti per la protezione delle armature. Opere di protezione e/o ricostruzione dei copriferri mancanti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Intervento per anomalie di fessurazione

Descrizione: Opere di ripristino delle fessure e consolidamento dell'integrità del materiale tramite l'utilizzo di resine, malte, cemento o vernici.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Manutenzione rivestimenti

Descrizione: Sostituzione o riparazione dei rivestimenti ammalorati con utilizzo di materiali ad elevata resistenza all'usura e/o antisdrucciolo. Rimozioni e rifacimenti degli strati di intonaco eventualmente presenti.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Rinforzo elemento

Descrizione: Realizzazione di interventi di rinforzo strutturale dell'elemento mediante la realizzazione di gabbie di armature integrative con getto di malte a ritiro controllato o attraverso l'applicazione di nuovi componenti di rinforzo che aumentino la sezione resistente dell'elemento strutturale.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Riparazione e ripresa delle lesioni

Descrizione: Interventi di riparazione e di ripristino dell'integrità e della resistenza dell'elemento strutturale lesionato tramite l'utilizzo di resine, malte, cemento o altri prodotti specifici, indicati anche per la ricostruzione delle parti di calcestruzzo mancanti. Tali trattamenti saranno eseguiti dopo una approfondita valutazione delle cause del difetto accertato e considerando che la lesione sia stabilizzata o meno.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

Ripristino configurazione statica

Descrizione: Interventi di consolidamento e di ripristino planarità e/o orizzontalità dell'elemento

strutturale deformato, anche mediante l'applicazione di elementi aggiuntivi di sostegno.

Esecutore: Ditta specializzata

Requisiti: -

Periodo: 1

Frequenza: Anni

6. RELAZIONE SUI RISULTATI SPERIMENTALI

6.1. RELAZIONE GEOLOGICA SULLE INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE GEOLOGICA DEL SITO

È stata eseguita una relazione geologica specifica del sito di interesse che si allega alla presente pratica. Per quanto riguarda la categoria del suolo di fondazione, secondo la nuova normativa di legge, e in base a diverse relazioni geologiche in nostro possesso dell'area, si inserisce tale suolo nella categoria "C".

6.2. RELAZIONE GEOTECNICA SULLE INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE DEL VOLUME SIGNIFICATIVO DEL TERRENO

Da una verifica dello stato attuale delle fondazioni del fabbricato è emerso che queste presentano dimensioni tali da garantire una adeguata portanza. Non è pertanto necessario un intervento sulle fondazioni esistenti.

L'unico intervento che sarà realizzato è la creazione di una nuova fondazione a T rovescia alla base del nuovo muro di irrigidimento che sarà realizzato in sostituzione dell'elemento divisorio esistente. Per quanto rigurda la palestra, in relazione all'intervento proposto, si prevede il rinforzo delle fondazioni sottostanti ai nuovi controventi in quanto si modificano le pressioni sul terreno.

6.3. RELAZIONE SULLA MODELLAZIONE SISMICA CONCERNENTE LA 'PERICOLOSITA' SISMICA DI BASE' DEL SITO DI COSTRUZIONE

Si è valutata la pericolosità sismica di base del sito sulla base del progetto S1-INGV. I valori ag, F0 e TC* sono stati ottenuti interpolando i dati del reticolo intorno al sito di riferimento. Di seguito sono riportati i valori ottenuti:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	45	0.067	2.439	0.272
SLD	75	0.083	2.439	0.282
SLV	712	0.211	2.417	0.304
SLC	1462	0.272	2.421	0.314

Considerando un terreno di categoria D si ottiene infine:

TR	St	S_s	Cc
30 (SLO)	1.000	1.500	1.613
50 (SLD)	1.000	1.500	1.594
475 (SLV)	1.000	1.393	1.555

975 (SLU)	1.000	1.305	1.539
773 (500)	1.000	1.505	1.557

7. ELABORATI GRAFICI DEL RILIEVO GEOMETRICO-STRUTTURALE

Si vedano le tavole strutturali

8. VALUTAZIONE DELLA SICUREZZA

Gli interventi eseguiti sul corpo di fabbrica comportano l'adeguamento del fabbricato stesso con ζ_E pari o maggiore a 0.8 come richiesto dalla Circolare 7/2019.

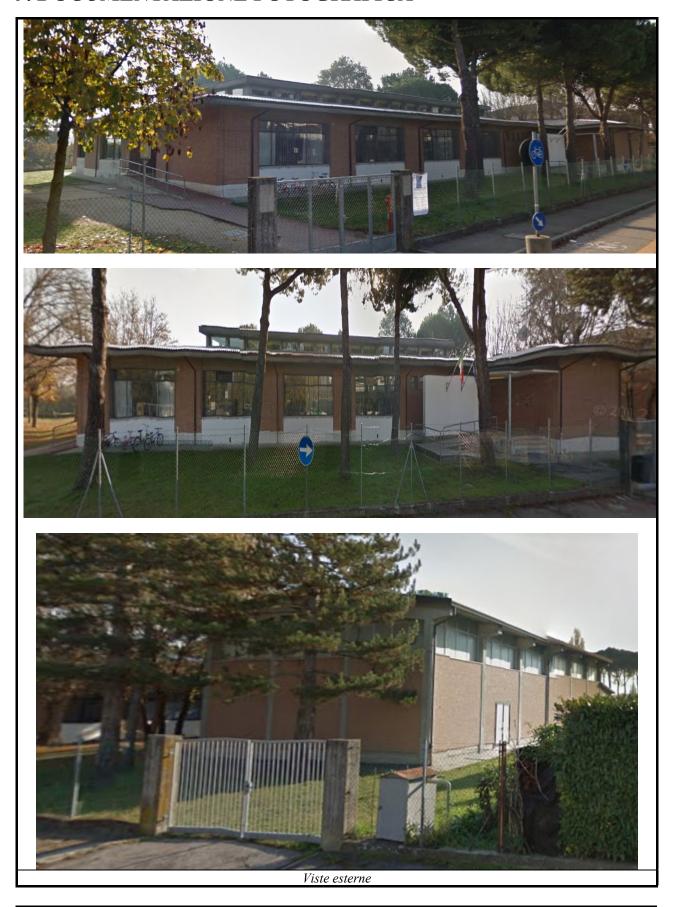
ANALISI GLOBALE - STATO DI PROGETTO

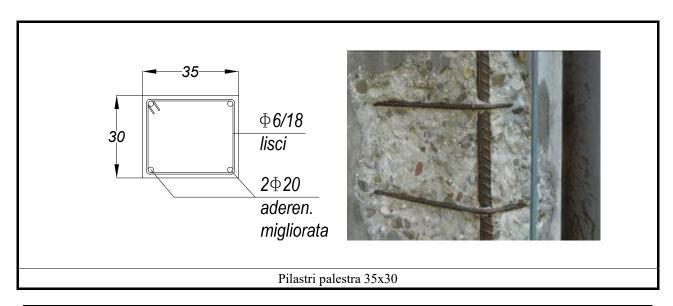
Analisi sismica n. 4 Direzione X

Analisi sismica n. 23 Direzione Y

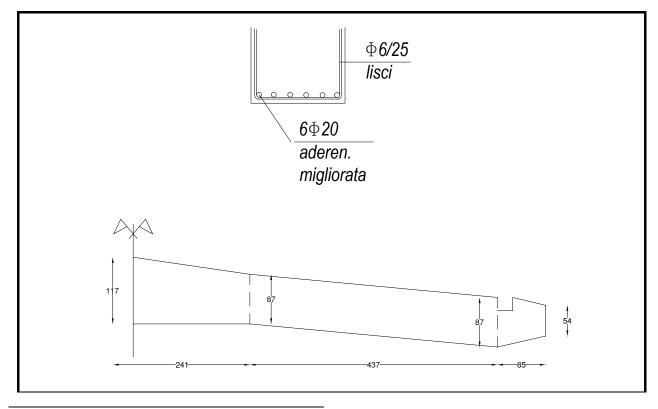
Stato limite	α PGA (TR)	αTR	α PGA (TR)	αTR
SLC	1.1922	> 1.6929	1.1922	> 1.6929

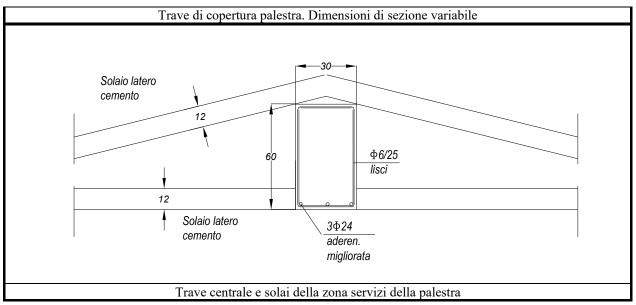
(*) Tutti i valori di α_{TR} sono da ritenersi calcolati come α_{TR} =TR_C/TR_D (privi di qualsiasi esponente correttivo).

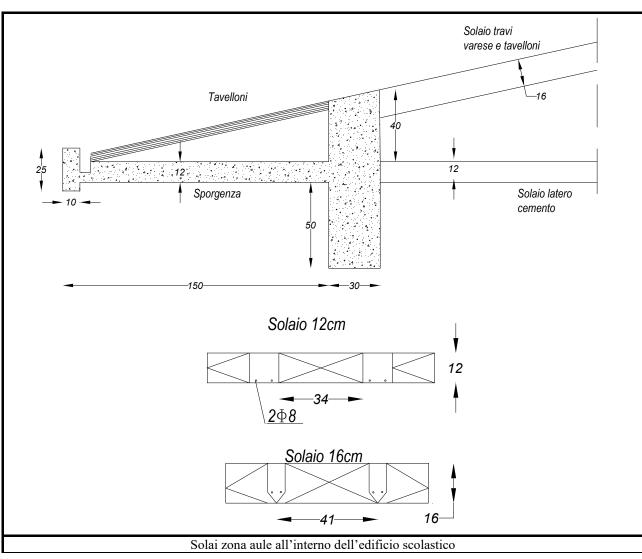

In base alla tipologia di edificio si assume ζ_{E_lim} = 1.000

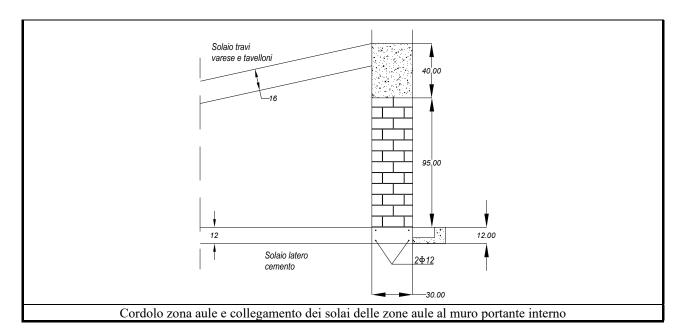

La verifica risulta superata, la condizione più gravosa si ha in corrispondenza della direzione [Y] del sisma.

ANALISI LOCALE - STATO DI PROGETTO


PARETE	ζΕ Verifica di espulsione
Parete esterna	0.693/0.211 = 3.28
Parete interna	1.878/0.211= 8.90


9. DOCUMENTAZIONE FOTOGRAFICA





Solaio del salone centrale ha altezza di 42cm, pignatte di 33cm travetti da 8cm armati con 2Φ22 e cordolo di ripartizione a metà luce di 12x42cm armato con 2Φ24.

Salone centrale scuola

Estreni scuola

Estreni scuola

